{"title":"Bit-flipping BIST","authors":"H. Wunderlich, G. Kiefer","doi":"10.1109/ICCAD.1996.569803","DOIUrl":null,"url":null,"abstract":"A scan-based BIST scheme is presented which guarantees complete fault coverage with very low hardware overhead. A probabilistic analysis shows that the output of an LFSR which feeds a scan path has to be modified only at a few bits in order to transform the random patterns into a complete test set. These modifications may be implemented by a bit-flipping function which has the LFSR-state as an input, and flips the value shifted into the scan path at certain times. A procedure is described for synthesizing the additional bit-flipping circuitry, and the experimental results indicate that this mixed-mode BIST scheme requires less hardware for complete fault coverage than all the other scan-based BIST approaches published so far.","PeriodicalId":408850,"journal":{"name":"Proceedings of International Conference on Computer Aided Design","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"243","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of International Conference on Computer Aided Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD.1996.569803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 243
Abstract
A scan-based BIST scheme is presented which guarantees complete fault coverage with very low hardware overhead. A probabilistic analysis shows that the output of an LFSR which feeds a scan path has to be modified only at a few bits in order to transform the random patterns into a complete test set. These modifications may be implemented by a bit-flipping function which has the LFSR-state as an input, and flips the value shifted into the scan path at certain times. A procedure is described for synthesizing the additional bit-flipping circuitry, and the experimental results indicate that this mixed-mode BIST scheme requires less hardware for complete fault coverage than all the other scan-based BIST approaches published so far.