Intrusion Detection Systems-Enabled Power Electronics for Unmanned Aerial Vehicles

M. Rahman, Md. Tauhidur Rahman, M. Kisacikoglu, K. Akkaya
{"title":"Intrusion Detection Systems-Enabled Power Electronics for Unmanned Aerial Vehicles","authors":"M. Rahman, Md. Tauhidur Rahman, M. Kisacikoglu, K. Akkaya","doi":"10.1109/CyberPELS49534.2020.9311545","DOIUrl":null,"url":null,"abstract":"Compromised power electronics, due to firmware attacks and hardware Trojans, in a flight computer can jeopardize the safety and security of an Unmanned Aerial Vehicle (UAV). They can maliciously alter sensor measurements or control commands to make a UAV to take disastrous moves. Unfortunately, most of these attacks are difficult to detect before deploying components in the system. Therefore, detecting compromised behavior run-time is important, while it is challenging at the same time. In this work, we propose to build machine learning-based intrusion detection systems (IDSs) to be deployed at the power electronics/microcontorller level such that it can deal with malicious data/control commands initiated due to hardware attacks.","PeriodicalId":434320,"journal":{"name":"2020 IEEE CyberPELS (CyberPELS)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE CyberPELS (CyberPELS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CyberPELS49534.2020.9311545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Compromised power electronics, due to firmware attacks and hardware Trojans, in a flight computer can jeopardize the safety and security of an Unmanned Aerial Vehicle (UAV). They can maliciously alter sensor measurements or control commands to make a UAV to take disastrous moves. Unfortunately, most of these attacks are difficult to detect before deploying components in the system. Therefore, detecting compromised behavior run-time is important, while it is challenging at the same time. In this work, we propose to build machine learning-based intrusion detection systems (IDSs) to be deployed at the power electronics/microcontorller level such that it can deal with malicious data/control commands initiated due to hardware attacks.
支持入侵检测系统的无人机电力电子设备
由于固件攻击和硬件木马,飞行计算机中的电力电子设备可能会危及无人机(UAV)的安全。他们可以恶意改变传感器测量或控制命令,使无人机采取灾难性的行动。不幸的是,在将组件部署到系统之前,这些攻击中的大多数很难检测到。因此,检测受损害的行为运行时非常重要,但同时也具有挑战性。在这项工作中,我们建议构建基于机器学习的入侵检测系统(ids),部署在电力电子/微控制器级别,这样它就可以处理由于硬件攻击而发起的恶意数据/控制命令。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信