Full Echo Q-routing with adaptive learning rates: A reinforcement learning approach to network routing

Y. Shilova, Maksim Kavalerov, I. Bezukladnikov
{"title":"Full Echo Q-routing with adaptive learning rates: A reinforcement learning approach to network routing","authors":"Y. Shilova, Maksim Kavalerov, I. Bezukladnikov","doi":"10.1109/EICONRUSNW.2016.7448188","DOIUrl":null,"url":null,"abstract":"Dynamically changing networks, such as mobile wireless sensor networks, Internet of Things networks, vehicular ad hoc networks etc., require efficient routing techniques. We present a routing algorithm, Adaptive Q-routing Full Echo, that is an extension of `full echo' modification of Q-routing algorithm and uses adaptive learning rates to improve exploration behaviour. The performance of the proposed algorithm is evaluated empirically in comparison to Q-routing and Dual Q-routing algorithms. The preliminary results suggest that the proposed algorithm represents a promising way of achieving good routing performance in dynamically changing networks.","PeriodicalId":262452,"journal":{"name":"2016 IEEE NW Russia Young Researchers in Electrical and Electronic Engineering Conference (EIConRusNW)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE NW Russia Young Researchers in Electrical and Electronic Engineering Conference (EIConRusNW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EICONRUSNW.2016.7448188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

Dynamically changing networks, such as mobile wireless sensor networks, Internet of Things networks, vehicular ad hoc networks etc., require efficient routing techniques. We present a routing algorithm, Adaptive Q-routing Full Echo, that is an extension of `full echo' modification of Q-routing algorithm and uses adaptive learning rates to improve exploration behaviour. The performance of the proposed algorithm is evaluated empirically in comparison to Q-routing and Dual Q-routing algorithms. The preliminary results suggest that the proposed algorithm represents a promising way of achieving good routing performance in dynamically changing networks.
具有自适应学习率的全回声q路由:网络路由的强化学习方法
动态变化的网络,如移动无线传感器网络、物联网网络、车载自组织网络等,需要高效的路由技术。我们提出了一种路由算法,自适应q路由全回波,这是q路由算法的“全回波”修改的扩展,并使用自适应学习率来改善探索行为。通过与q -路由和双q -路由算法的比较,对所提算法的性能进行了经验评价。初步结果表明,该算法是在动态变化的网络中实现良好路由性能的一种有希望的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信