A recursive fast multiplier

A. Danysh, E. Swartzlander
{"title":"A recursive fast multiplier","authors":"A. Danysh, E. Swartzlander","doi":"10.1109/ACSSC.1998.750853","DOIUrl":null,"url":null,"abstract":"This paper presents a recursive fast multiplication algorithm. The paper defines the algorithm and applies it to two's complement signed multiplication. A step-by-step approach is given that discusses the architectural and logic implementation in detail. A random, self-checking, simulation program verifies the correctness of the recursive multiplication algorithm. The paper analyzes the speed and gate count of the design and compares the results to other multiplier designs.","PeriodicalId":393743,"journal":{"name":"Conference Record of Thirty-Second Asilomar Conference on Signals, Systems and Computers (Cat. No.98CH36284)","volume":"65 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of Thirty-Second Asilomar Conference on Signals, Systems and Computers (Cat. No.98CH36284)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.1998.750853","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

Abstract

This paper presents a recursive fast multiplication algorithm. The paper defines the algorithm and applies it to two's complement signed multiplication. A step-by-step approach is given that discusses the architectural and logic implementation in detail. A random, self-checking, simulation program verifies the correctness of the recursive multiplication algorithm. The paper analyzes the speed and gate count of the design and compares the results to other multiplier designs.
递归快速乘法器
提出了一种递归快速乘法算法。本文定义了该算法,并将其应用于2的补号乘法。给出了详细讨论体系结构和逻辑实现的逐步方法。一个随机、自检的仿真程序验证了递归乘法算法的正确性。本文分析了该设计的速度和门数,并将结果与其他乘法器设计进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信