Dynamic Resource Prediction in Cloud Computing for Complex System Simulatiuon: A Probabilistic Approach Using Stacking Ensemble Learning

Shuai Wang, Yiping Yao, Yuhao Xiao, Huilong Chen
{"title":"Dynamic Resource Prediction in Cloud Computing for Complex System Simulatiuon: A Probabilistic Approach Using Stacking Ensemble Learning","authors":"Shuai Wang, Yiping Yao, Yuhao Xiao, Huilong Chen","doi":"10.1109/ICHCI51889.2020.00050","DOIUrl":null,"url":null,"abstract":"Dynamic resource prediction in cloud computing can provide support for allocating resources required by complex system simulation (CSS) on demand, which can improve the simulation performance and resource utilization. However, the resource requirements have strong volatility because of the dynamic changes of simulation entities in the CSS applications, and few limited dynamic prediction models can predict the resource with strong volatility. In this study, a probabilistic approach using stacking ensemble learning, which integrates random forest, long short-term memory networks, linear regression, and Gaussian process regression, is proposed to predict the cloud resources required by the CSS applications. The proposed approach can quantify the uncertainty information in the cloud resource prediction. Experiments show that the proposed probabilistic approach using stacking ensemble learning can achieve better performance compared with other resource prediction approaches.","PeriodicalId":355427,"journal":{"name":"2020 International Conference on Intelligent Computing and Human-Computer Interaction (ICHCI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Intelligent Computing and Human-Computer Interaction (ICHCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICHCI51889.2020.00050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Dynamic resource prediction in cloud computing can provide support for allocating resources required by complex system simulation (CSS) on demand, which can improve the simulation performance and resource utilization. However, the resource requirements have strong volatility because of the dynamic changes of simulation entities in the CSS applications, and few limited dynamic prediction models can predict the resource with strong volatility. In this study, a probabilistic approach using stacking ensemble learning, which integrates random forest, long short-term memory networks, linear regression, and Gaussian process regression, is proposed to predict the cloud resources required by the CSS applications. The proposed approach can quantify the uncertainty information in the cloud resource prediction. Experiments show that the proposed probabilistic approach using stacking ensemble learning can achieve better performance compared with other resource prediction approaches.
面向复杂系统仿真的云计算动态资源预测:一种基于堆叠集成学习的概率方法
云计算中的动态资源预测可以为复杂系统仿真所需资源的按需分配提供支持,从而提高仿真性能和资源利用率。然而,由于CSS应用中仿真实体的动态变化,资源需求具有较强的波动性,很少有有限的动态预测模型能够预测具有较强波动性的资源。本文提出了一种结合随机森林、长短期记忆网络、线性回归和高斯过程回归的概率叠加集成学习方法来预测CSS应用所需的云资源。该方法可以对云资源预测中的不确定性信息进行量化。实验表明,与其他资源预测方法相比,本文提出的基于叠加集成学习的概率预测方法具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信