Fractional K-best sphere decoding algorithm over rayleigh fading MIMO channels

Ibrahim Al-Nahhal, A. Emran, Hossam M. Kasem, A. A. El-Rahman
{"title":"Fractional K-best sphere decoding algorithm over rayleigh fading MIMO channels","authors":"Ibrahim Al-Nahhal, A. Emran, Hossam M. Kasem, A. A. El-Rahman","doi":"10.1109/JEC-ECC.2013.6766395","DOIUrl":null,"url":null,"abstract":"K-best sphere decoding algorithm (KBA) is used to approach near-maximum-likelihood (ML) performance for multiple-input-multiple-output (MIMO) detection with lower complexity than maximum-likelihood (ML) method. In KBA, the value of survivor paths K, can be fixed values only in all tree levels. These fixed values of K's give a certain performances at a certain complexities. In this paper, a new fractional K-best algorithm (FKBA) is proposed which gives a performance and complexity between these discreet performances and complexities for ordinary KBA, acts as if the values of K's are fractions (not integers). This can be achieved by increasing the number of survivor paths into K+Δ in some tree levels and stays K paths in other tree levels. The value of Δ in a specific tree level is resulted from the number of branches have distance metrics lower than or equal the value of average distance metric for all branches in the same tree level. The simulation results show that the performance and complexity of FKBA are approximately in the middle of performances and complexities of two successive values of K (K and K + 1) for different MIMO models of 16 - QAM over Rayleigh fading MIMO Channels for all values of SNR.","PeriodicalId":379820,"journal":{"name":"2013 Second International Japan-Egypt Conference on Electronics, Communications and Computers (JEC-ECC)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Second International Japan-Egypt Conference on Electronics, Communications and Computers (JEC-ECC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JEC-ECC.2013.6766395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

K-best sphere decoding algorithm (KBA) is used to approach near-maximum-likelihood (ML) performance for multiple-input-multiple-output (MIMO) detection with lower complexity than maximum-likelihood (ML) method. In KBA, the value of survivor paths K, can be fixed values only in all tree levels. These fixed values of K's give a certain performances at a certain complexities. In this paper, a new fractional K-best algorithm (FKBA) is proposed which gives a performance and complexity between these discreet performances and complexities for ordinary KBA, acts as if the values of K's are fractions (not integers). This can be achieved by increasing the number of survivor paths into K+Δ in some tree levels and stays K paths in other tree levels. The value of Δ in a specific tree level is resulted from the number of branches have distance metrics lower than or equal the value of average distance metric for all branches in the same tree level. The simulation results show that the performance and complexity of FKBA are approximately in the middle of performances and complexities of two successive values of K (K and K + 1) for different MIMO models of 16 - QAM over Rayleigh fading MIMO Channels for all values of SNR.
基于瑞利衰落MIMO信道的分数k -最优球解码算法
在多输入多输出(MIMO)检测中,采用k -最优球解码算法(KBA)实现近最大似然(ML)性能,且复杂度低于最大似然(ML)方法。在KBA中,存活路径K的值只能在所有树的层次上是固定的。这些固定的K值在一定的复杂度下给出了一定的性能。本文提出了一种新的分数K-最优算法(FKBA),它给出了普通KBA的离散性能和复杂度之间的性能和复杂度,就像K的值是分数(而不是整数)一样。这可以通过在某些树级别中增加存活路径的数量到K+Δ而在其他树级别中保持K个路径来实现。在特定的树级别中,Δ的值是由距离度量低于或等于同一树级别中所有分支的平均距离度量值的分支数量产生的。仿真结果表明,在瑞利衰落MIMO信道上,对于16 - QAM的不同MIMO模型,在所有信噪比值下,FKBA的性能和复杂度大致处于两个连续K值(K和K + 1)的性能和复杂度中间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信