GPU-based VP8 encoding: Performance in native and virtualized environments

P. Paglierani, G. Grossi, F. Pedersini, A. Petrini
{"title":"GPU-based VP8 encoding: Performance in native and virtualized environments","authors":"P. Paglierani, G. Grossi, F. Pedersini, A. Petrini","doi":"10.1109/TEMU.2016.7551915","DOIUrl":null,"url":null,"abstract":"A key motivation behind the success of Cloud Computing is that virtualization allows significant energy and cost savings by sharing physical resources. Another source of savings in virtualized architectures is the use of h/w accelerators (e.g. GPUs, FPGAs). This paper analyzes the performance achieved by a computationally demanding task running on a commodity server when a GPU-based accelerator is adopted. In the analysis, the VP8 video encoder has been used, with its most intensive functional block (motion estimation) implemented in the GPU. A simple but effective model to predict the achieved CPU usage savings is provided, and experimentally validated. The performance achieved with different numbers of simultaneous encoding sessions and used CPU cores is presented and discussed. The results show that the hybrid CPU-GPU implementation can provide computational time savings from 20% to 300%, without any quality degradation. The presented results have been obtained within the FP7 T-NOVA Project.","PeriodicalId":208224,"journal":{"name":"2016 International Conference on Telecommunications and Multimedia (TEMU)","volume":"62 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Telecommunications and Multimedia (TEMU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TEMU.2016.7551915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

A key motivation behind the success of Cloud Computing is that virtualization allows significant energy and cost savings by sharing physical resources. Another source of savings in virtualized architectures is the use of h/w accelerators (e.g. GPUs, FPGAs). This paper analyzes the performance achieved by a computationally demanding task running on a commodity server when a GPU-based accelerator is adopted. In the analysis, the VP8 video encoder has been used, with its most intensive functional block (motion estimation) implemented in the GPU. A simple but effective model to predict the achieved CPU usage savings is provided, and experimentally validated. The performance achieved with different numbers of simultaneous encoding sessions and used CPU cores is presented and discussed. The results show that the hybrid CPU-GPU implementation can provide computational time savings from 20% to 300%, without any quality degradation. The presented results have been obtained within the FP7 T-NOVA Project.
基于gpu的VP8编码:本机和虚拟化环境中的性能
云计算成功背后的一个关键动机是虚拟化可以通过共享物理资源来节省大量的能源和成本。虚拟化架构中的另一个节省资源的来源是h/w加速器(例如gpu、fpga)的使用。本文分析了基于gpu的加速器在商用服务器上运行对计算量要求较高的任务所获得的性能。在分析中,使用了VP8视频编码器,其最密集的功能块(运动估计)在GPU中实现。提供了一个简单但有效的模型来预测实现的CPU使用节省,并进行了实验验证。给出并讨论了在不同的同时编码会话数和使用的CPU核数下所获得的性能。结果表明,CPU-GPU混合实现可以节省20%到300%的计算时间,且没有任何质量下降。本文的结果是在FP7 T-NOVA项目中获得的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信