Parts manipulation on an intelligent motion surface

Wenheng Liu, P. Will
{"title":"Parts manipulation on an intelligent motion surface","authors":"Wenheng Liu, P. Will","doi":"10.1109/IROS.1995.525916","DOIUrl":null,"url":null,"abstract":"This paper introduces the concept of using a dense array of individual manipulator mechanisms as a programmable intelligent motion surface (IMS). The individual robots in the array can be implemented in a variety of technologies with different sizes. Programmability is the common necessary characteristic for an IMS; the array, with groups of contiguous robots acting in unison, can be programmed to various configurations to have the effect of imparting force fields on objects being carried on its surface. The appropriate choice of force fields is shown to cause parts placed on the array to be moved in manners that are useful. These include such functions as translation, rotation, orientation alignment, spatial filtering and the feeding of parts. The use of the IMS is described for primitive assembly operations. Limitations of the approach, extensions and possibilities for future work, particularly in microelectromechanical system (MEMS) implementations, are discussed in detail in the paper. The practicability and the programming of such an IMS-based active assembly bench was explored in a simulated environment.","PeriodicalId":124483,"journal":{"name":"Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"60","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.1995.525916","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 60

Abstract

This paper introduces the concept of using a dense array of individual manipulator mechanisms as a programmable intelligent motion surface (IMS). The individual robots in the array can be implemented in a variety of technologies with different sizes. Programmability is the common necessary characteristic for an IMS; the array, with groups of contiguous robots acting in unison, can be programmed to various configurations to have the effect of imparting force fields on objects being carried on its surface. The appropriate choice of force fields is shown to cause parts placed on the array to be moved in manners that are useful. These include such functions as translation, rotation, orientation alignment, spatial filtering and the feeding of parts. The use of the IMS is described for primitive assembly operations. Limitations of the approach, extensions and possibilities for future work, particularly in microelectromechanical system (MEMS) implementations, are discussed in detail in the paper. The practicability and the programming of such an IMS-based active assembly bench was explored in a simulated environment.
智能运动曲面上的零件操作
本文介绍了将单个机械臂机构密集阵列作为可编程智能运动面(IMS)的概念。阵列中的单个机器人可以实现各种不同尺寸的技术。可编程性是IMS的共同必要特征;该阵列由一组连续的机器人组成,动作一致,可以被编程成不同的配置,以对其表面携带的物体施加力场。适当的力场选择可以使放置在阵列上的部件以有用的方式移动。这些功能包括平移、旋转、方向对准、空间滤波和零件进给等。描述了IMS对基本组装操作的使用。本文详细讨论了该方法的局限性,扩展和未来工作的可能性,特别是在微机电系统(MEMS)的实现中。在仿真环境下,探讨了基于ims的主动装配工作台的实用性和可编程性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信