Anupam Datta, D. Garg, D. Kaynar, Divya Sharma, Arunesh Sinha
{"title":"Program Actions as Actual Causes: A Building Block for Accountability","authors":"Anupam Datta, D. Garg, D. Kaynar, Divya Sharma, Arunesh Sinha","doi":"10.1109/CSF.2015.25","DOIUrl":null,"url":null,"abstract":"Protocols for tasks such as authentication, electronic voting, and secure multiparty computation ensure desirable security properties if agents follow their prescribed programs. However, if some agents deviate from their prescribed programs and a security property is violated, it is important to hold agents accountable by determining which deviations actually caused the violation. Motivated by these applications, we initiate a formal study of program actions as actual causes. Specifically, we define in an interacting program model what it means for a set of program actions to be an actual cause of a violation. We present a sound technique for establishing program actions as actual causes. We demonstrate the value of this formalism in two ways. First, we prove that violations of a specific class of safety properties always have an actual cause. Thus, our definition applies to relevant security properties. Second, we provide a cause analysis of a representative protocol designed to address weaknesses in the current public key certification infrastructure.","PeriodicalId":210917,"journal":{"name":"2015 IEEE 28th Computer Security Foundations Symposium","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 28th Computer Security Foundations Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSF.2015.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28
Abstract
Protocols for tasks such as authentication, electronic voting, and secure multiparty computation ensure desirable security properties if agents follow their prescribed programs. However, if some agents deviate from their prescribed programs and a security property is violated, it is important to hold agents accountable by determining which deviations actually caused the violation. Motivated by these applications, we initiate a formal study of program actions as actual causes. Specifically, we define in an interacting program model what it means for a set of program actions to be an actual cause of a violation. We present a sound technique for establishing program actions as actual causes. We demonstrate the value of this formalism in two ways. First, we prove that violations of a specific class of safety properties always have an actual cause. Thus, our definition applies to relevant security properties. Second, we provide a cause analysis of a representative protocol designed to address weaknesses in the current public key certification infrastructure.