A novel polynomial basis multiplier for arbitrary elliptic curves over GF (2m)

A. Mosin, J. Ravindra
{"title":"A novel polynomial basis multiplier for arbitrary elliptic curves over GF (2m)","authors":"A. Mosin, J. Ravindra","doi":"10.1109/I2CT.2014.7092022","DOIUrl":null,"url":null,"abstract":"Finite field GF (2<sup>m</sup>) arithmetic plays a crucial role in applications like Computer algebra, Coding theory and Elliptic Curve Cryptography (ECC). The GF (2<sup>m</sup>) multiplication is considered significant building block among the finite field arithmetic operations. A new shift and add polynomial basis multiplier over GF (2<sup>m</sup>) is explained in this paper for irreducible GF (2<sup>m</sup>) generating polynomials f (x) = x<sup>m</sup> +x(k<sub>t</sub>) + x(k<sub>t-1</sub>) + ...... x(k<sub>1</sub>) + 1. The multiplier which is proposed has less area and minimum number of gates. In this paper the RTL code is compiled and synthesized using Encounter RTL Compiler tool provided by the Cadence Design Systems. Synthesis is carried out using the TSMC 135nm, 65nm and 40nm technology files.","PeriodicalId":384966,"journal":{"name":"International Conference for Convergence for Technology-2014","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference for Convergence for Technology-2014","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I2CT.2014.7092022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Finite field GF (2m) arithmetic plays a crucial role in applications like Computer algebra, Coding theory and Elliptic Curve Cryptography (ECC). The GF (2m) multiplication is considered significant building block among the finite field arithmetic operations. A new shift and add polynomial basis multiplier over GF (2m) is explained in this paper for irreducible GF (2m) generating polynomials f (x) = xm +x(kt) + x(kt-1) + ...... x(k1) + 1. The multiplier which is proposed has less area and minimum number of gates. In this paper the RTL code is compiled and synthesized using Encounter RTL Compiler tool provided by the Cadence Design Systems. Synthesis is carried out using the TSMC 135nm, 65nm and 40nm technology files.
GF (2m)上任意椭圆曲线的多项式基乘法器
有限域GF (2m)算法在计算机代数、编码理论和椭圆曲线密码学(ECC)等领域有着重要的应用。GF (2m)乘法被认为是有限域算术运算中重要的组成部分。对于不可约GF (2m)生成多项式f (x) = xm +x(kt) +x(kt -1) + ......,本文给出了GF (2m)上一个新的移位加多项式基乘子X (k1) + 1。所提出的乘法器具有面积小、门数少的特点。本文使用Cadence Design Systems提供的Encounter RTL编译器对RTL代码进行编译和合成。采用台积电135nm、65nm和40nm工艺文件进行合成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信