Time Series Analysis and Forecasting of Wind Speed Data

Meftah Elsaraiti, A. Merabet, A. Al‐Durra
{"title":"Time Series Analysis and Forecasting of Wind Speed Data","authors":"Meftah Elsaraiti, A. Merabet, A. Al‐Durra","doi":"10.1109/IAS.2019.8912392","DOIUrl":null,"url":null,"abstract":"This paper discusses the problem of predicting wind speed using the statistical model based on autoregressive integrated moving average (ARIMA). Historical wind speed data, representing the Chester region of Nova Scotia, Canada, from 2012 to 2017, was used to operate this model. The form structure is defined by the rows p, d, q, and the length of the data period retrospectively. The structure parameters, autoregressive and moving average, were determined by the partial auto-correlation function and auto-correlation function, respectively. The model forecasting accuracy is based on the root mean square error, the mean absolute percentage error and the mean absolute error.","PeriodicalId":376719,"journal":{"name":"2019 IEEE Industry Applications Society Annual Meeting","volume":"133 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Industry Applications Society Annual Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAS.2019.8912392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper discusses the problem of predicting wind speed using the statistical model based on autoregressive integrated moving average (ARIMA). Historical wind speed data, representing the Chester region of Nova Scotia, Canada, from 2012 to 2017, was used to operate this model. The form structure is defined by the rows p, d, q, and the length of the data period retrospectively. The structure parameters, autoregressive and moving average, were determined by the partial auto-correlation function and auto-correlation function, respectively. The model forecasting accuracy is based on the root mean square error, the mean absolute percentage error and the mean absolute error.
风速数据的时间序列分析与预报
本文讨论了基于自回归积分移动平均(ARIMA)统计模型的风速预测问题。使用2012年至2017年代表加拿大新斯科舍省切斯特地区的历史风速数据来运行该模型。表单结构由p、d、q行和回顾性的数据周期长度定义。结构参数自回归和移动平均分别由部分自相关函数和自相关函数确定。模型的预测精度基于均方根误差、平均绝对百分比误差和平均绝对误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信