Parametric sensitivity reduction of PI-based control systems by means of evolutionary optimization algorithms

Radu-Codrut David, R. Precup, S. Preitl, J. Tar, J. Fodor
{"title":"Parametric sensitivity reduction of PI-based control systems by means of evolutionary optimization algorithms","authors":"Radu-Codrut David, R. Precup, S. Preitl, J. Tar, J. Fodor","doi":"10.1109/SACI.2011.5873007","DOIUrl":null,"url":null,"abstract":"This paper proposes new optimization algorithms for the optimal tuning of PI controllers dedicated to a class of second-order processes with integral component and variable parameters. The sensitivity analysis with respect to the parametric variations of the controlled process leads to the sensitivity models. The augmentation of the output sensitivity functions over the integral of absolute error criterion results in the definition of objective functions, and the corresponding optimization problems are solved by Particle Swarm Optimization (PSO) and Gravitational Search Algorithms (GSA). The algorithms are tested in a case study associated with several analyses.","PeriodicalId":334381,"journal":{"name":"2011 6th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 6th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SACI.2011.5873007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper proposes new optimization algorithms for the optimal tuning of PI controllers dedicated to a class of second-order processes with integral component and variable parameters. The sensitivity analysis with respect to the parametric variations of the controlled process leads to the sensitivity models. The augmentation of the output sensitivity functions over the integral of absolute error criterion results in the definition of objective functions, and the corresponding optimization problems are solved by Particle Swarm Optimization (PSO) and Gravitational Search Algorithms (GSA). The algorithms are tested in a case study associated with several analyses.
基于进化优化算法的pi控制系统参数灵敏度降低
针对一类具有积分分量和变参数的二阶过程,提出了新的PI控制器最优整定算法。对被控过程的参数变化进行灵敏度分析,得到了灵敏度模型。将输出灵敏度函数增大到绝对误差准则的积分上,得到目标函数的定义,并利用粒子群算法(PSO)和引力搜索算法(GSA)求解相应的优化问题。算法在与几个分析相关的案例研究中进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信