Investigating evolvable hardware classification for the BioSleeve electromyographic interface

K. Glette, Paul Kaufmann, C. Assad, Michael T. Wolf
{"title":"Investigating evolvable hardware classification for the BioSleeve electromyographic interface","authors":"K. Glette, Paul Kaufmann, C. Assad, Michael T. Wolf","doi":"10.1109/ICES.2013.6613285","DOIUrl":null,"url":null,"abstract":"We investigate the applicability of an evolvable hardware classifier architecture for electromyography (EMG) data from the BioSleeve wearable human-machine interface, with the goal of having embedded training and classification. We investigate classification accuracy for datasets with 17 and 11 gestures and compare to results of Support Vector Machines (SVM) and Random Forest classifiers. Classification accuracies are 91.5% for 17 gestures and 94.4% for 11 gestures. Initial results for a field programmable array (FPGA) implementation of the classifier architecture are reported, showing that the classifier architecture fits in a Xilinx XC6SLX45 FPGA. We also investigate a bagging-inspired approach for training the individual components of the classifier with a subset of the full training data. While showing some improvement in classification accuracy, it also proves useful for reducing the number of training instances and thus reducing the training time for the classifier.","PeriodicalId":213522,"journal":{"name":"2013 IEEE International Conference on Evolvable Systems (ICES)","volume":"200 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Evolvable Systems (ICES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICES.2013.6613285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We investigate the applicability of an evolvable hardware classifier architecture for electromyography (EMG) data from the BioSleeve wearable human-machine interface, with the goal of having embedded training and classification. We investigate classification accuracy for datasets with 17 and 11 gestures and compare to results of Support Vector Machines (SVM) and Random Forest classifiers. Classification accuracies are 91.5% for 17 gestures and 94.4% for 11 gestures. Initial results for a field programmable array (FPGA) implementation of the classifier architecture are reported, showing that the classifier architecture fits in a Xilinx XC6SLX45 FPGA. We also investigate a bagging-inspired approach for training the individual components of the classifier with a subset of the full training data. While showing some improvement in classification accuracy, it also proves useful for reducing the number of training instances and thus reducing the training time for the classifier.
研究生物袖肌电图界面的可进化硬件分类
我们研究了一种可进化的硬件分类器架构对来自BioSleeve可穿戴人机界面的肌电图(EMG)数据的适用性,目的是实现嵌入式训练和分类。我们研究了包含17和11个手势的数据集的分类精度,并与支持向量机(SVM)和随机森林分类器的结果进行了比较。17种手势的分类准确率为91.5%,11种手势的分类准确率为94.4%。本文报告了该分类器架构的现场可编程阵列(FPGA)实现的初步结果,表明该分类器架构适合Xilinx XC6SLX45 FPGA。我们还研究了一种受装袋启发的方法,用于用完整训练数据的子集训练分类器的各个组件。在显示分类精度的一些改进的同时,它也被证明有助于减少训练实例的数量,从而减少分类器的训练时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信