UJI GOODNESS OF FIT DISTRIBUSI GAMMA TERBOBOTI DENGAN STATISTIK KOLMOGOROV-SMIRNOV UNTUK PARAMETER TERESTIMASI

Radiyatul Mardiyah, Wayan Somayasa, Herdi Budiman, Muhammad Kabil Djafar, Rahmaliah Sahupala
{"title":"UJI GOODNESS OF FIT DISTRIBUSI GAMMA TERBOBOTI DENGAN STATISTIK KOLMOGOROV-SMIRNOV UNTUK PARAMETER TERESTIMASI","authors":"Radiyatul Mardiyah, Wayan Somayasa, Herdi Budiman, Muhammad Kabil Djafar, Rahmaliah Sahupala","doi":"10.33772/jmks.v2i2.13","DOIUrl":null,"url":null,"abstract":"Distribusi gamma terboboti merupakan versi bobot dari distribusi gamma. Tujuan dari penelitian ini adalah untuk menurunkan model uji goodness of fit dengan statistik Kolmogorov-Smirnov untuk distribusi gamma terboboti. Menentukan distribusi limit statistik Kolmogorov-Smirnov dibawah  yaitu diturunkan proses limit dari proses empiris dengan asimtotik. Akan ditunjukkan konsistensi dari statistik uji Kolmogorov-Smirnov secara analitik dan menggunakan simulasi Monte-Carlo. Kuantil-kuantil dari statistik Kolmogorov-Smirnov dihampiri menggunakan simulasi Monte-Carlo untuk menetukan  nilai kritis terhadap pengujian hipotesis  dimana menolak  pada berbagai tingkat signifikansi jika . Hasil perhitungan fungsi power dari satatistik uji Kolmogorov-Smirnov, Cramer-Von Mises, dan Anderson-Darling menggunakan distribusi eksponensial dan distribusi Weibull  untuk berbagai dan  dengan  dan  adalah . Jadi dengan nilai power yang maksimal tersebut menunjukkan bahwa ketiga uji mempunyai kemampuan yang tinggi untuk mendeteksi  yang salah. Selanjutnya, dilakukan penerapan uji Kolmogorov-Smirnov untuk mengetahui apakah data waktu (dalam hari) kelangsungan hidup marmut yang terinfeksi basil tuberkulum virulen yang digunakan berasal dari populasi yang berdistribusi gamma terboboti. Diperoleh hasil pengujian bahwa data berasal dari distribusi gamma terboboti.","PeriodicalId":253418,"journal":{"name":"Jurnal Matematika Komputasi dan Statistika","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Matematika Komputasi dan Statistika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33772/jmks.v2i2.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Distribusi gamma terboboti merupakan versi bobot dari distribusi gamma. Tujuan dari penelitian ini adalah untuk menurunkan model uji goodness of fit dengan statistik Kolmogorov-Smirnov untuk distribusi gamma terboboti. Menentukan distribusi limit statistik Kolmogorov-Smirnov dibawah  yaitu diturunkan proses limit dari proses empiris dengan asimtotik. Akan ditunjukkan konsistensi dari statistik uji Kolmogorov-Smirnov secara analitik dan menggunakan simulasi Monte-Carlo. Kuantil-kuantil dari statistik Kolmogorov-Smirnov dihampiri menggunakan simulasi Monte-Carlo untuk menetukan  nilai kritis terhadap pengujian hipotesis  dimana menolak  pada berbagai tingkat signifikansi jika . Hasil perhitungan fungsi power dari satatistik uji Kolmogorov-Smirnov, Cramer-Von Mises, dan Anderson-Darling menggunakan distribusi eksponensial dan distribusi Weibull  untuk berbagai dan  dengan  dan  adalah . Jadi dengan nilai power yang maksimal tersebut menunjukkan bahwa ketiga uji mempunyai kemampuan yang tinggi untuk mendeteksi  yang salah. Selanjutnya, dilakukan penerapan uji Kolmogorov-Smirnov untuk mengetahui apakah data waktu (dalam hari) kelangsungan hidup marmut yang terinfeksi basil tuberkulum virulen yang digunakan berasal dari populasi yang berdistribusi gamma terboboti. Diperoleh hasil pengujian bahwa data berasal dari distribusi gamma terboboti.
完成的伽玛分布是伽玛分布的重量版本。本研究的目的是将健康品质测试模型与kolmogorov smirnov用于伽玛分布的统计数据进行对比。确定kolmogorov smirnov统计极限的分布,即从asimtotik经验进程中降低极限进程。将显示kolmogorov smirnov测试统计数据的一致性,并使用蒙特-卡洛模拟。Kuantil-kuantil统计的价值接近Kolmogorov-Smirnov用蒙特卡洛模拟坚定批评拒绝不同程度的意义在哪里,如果假设测试。kolmogorov smirnov测试的satagorov、cramers - von Mises和Anderson-Darling的功率函数计算结果,将Weibull的指数分布用于各种和is。所以有了最大的功率值,这三个测试都有很高的检测错误的能力。反过来,进行了Kolmogorov-Smirnov测试,以确定所使用病毒杆菌结核杆菌感染的土拨鼠的持续时间数据是否来自一种高度伽玛分布的人群。测试表明这些数据来自放射性伽马的分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信