HOG AND STATISTICAL FEATURES OFPOTATOES USING MATLAB

D. RavindraBabu, R. C. Verma, N. K. Agrawal, N. Jain
{"title":"HOG AND STATISTICAL FEATURES OFPOTATOES USING MATLAB","authors":"D. RavindraBabu, R. C. Verma, N. K. Agrawal, N. Jain","doi":"10.30780/IJTRS.V04.I04.002","DOIUrl":null,"url":null,"abstract":"E-Mail Id: ravindrababu.18@gmail.com 1 Ph.D. Scholar and Professor, Dept. of Processing and Food Engineering, CTAE, Udaipur (India) 2 Assistant Professor, Dept. of Electronics and Communication Engineering, , CTAE, Udaipur (India) 3 Assistant Professor, Dept. of Electrical Enginnering, , CTAE, Udaipur (India) Abstract: Image processing of rotten, crack, good, sprout and skin damage potatoes for extracting Histogram of Oriented Gradients (HOG) is given that in rotten image, rotten part and the areas subjected to initial sprouting are showing good gradients having cell size 18×18, compared to non defect areas of potato. The smooth areas of histogram of oriented gradients (HOG) may be formed due to not using light diffuser while capturing. HOG of cracked and good potato images observed that gradients are rotating in anti clockwise direction. HOG of skin damage shows that gradients at top of the image are weak than other parts of image but initial sprouting images have high gradients. Similar trend observed for sprout images. Contrast of skin damage potato is higher for sprout, rotten, good and crack potato. Rotten and sprout specimen images are equal in correlation values followed by good and skin damage potato. Crack and sprout specimen images contains equal energy values. Rotten, crack and good specimen images contains equal homogeneity values followed by skin damage and sprout potato.","PeriodicalId":302312,"journal":{"name":"International Journal of Technical Research & Science","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Technical Research & Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30780/IJTRS.V04.I04.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

E-Mail Id: ravindrababu.18@gmail.com 1 Ph.D. Scholar and Professor, Dept. of Processing and Food Engineering, CTAE, Udaipur (India) 2 Assistant Professor, Dept. of Electronics and Communication Engineering, , CTAE, Udaipur (India) 3 Assistant Professor, Dept. of Electrical Enginnering, , CTAE, Udaipur (India) Abstract: Image processing of rotten, crack, good, sprout and skin damage potatoes for extracting Histogram of Oriented Gradients (HOG) is given that in rotten image, rotten part and the areas subjected to initial sprouting are showing good gradients having cell size 18×18, compared to non defect areas of potato. The smooth areas of histogram of oriented gradients (HOG) may be formed due to not using light diffuser while capturing. HOG of cracked and good potato images observed that gradients are rotating in anti clockwise direction. HOG of skin damage shows that gradients at top of the image are weak than other parts of image but initial sprouting images have high gradients. Similar trend observed for sprout images. Contrast of skin damage potato is higher for sprout, rotten, good and crack potato. Rotten and sprout specimen images are equal in correlation values followed by good and skin damage potato. Crack and sprout specimen images contains equal energy values. Rotten, crack and good specimen images contains equal homogeneity values followed by skin damage and sprout potato.
利用matlab对猪和马铃薯的特征进行统计
E-Mail Id: ravindrababu.18@gmail.com 1印度工业大学乌代普尔分校加工与食品工程系博士学者、教授2印度工业大学乌代普尔分校电子与通信工程系助理教授3印度工业大学乌代普尔分校电气工程系助理教授对腐烂、裂纹、好、发芽和皮损马铃薯进行图像处理,提取定向梯度直方图(HOG),在腐烂图像中,与马铃薯非缺陷区域相比,腐烂部分和初发芽区域呈现出细胞大小为18×18的良好梯度。在定向梯度直方图(HOG)中,由于在捕获时没有使用光漫射器,可能会形成平滑区域。对裂纹马铃薯和完好马铃薯图像进行HOG分析,发现梯度呈逆时针方向旋转。皮肤损伤的HOG显示,图像顶部的梯度较图像其他部分弱,而初始发芽图像的梯度较高。类似的趋势也出现在芽图上。芽薯、烂薯、好薯和裂薯的皮损对比较高。腐烂和发芽样品图像的相关值相等,其次是好马铃薯和皮损马铃薯。裂纹和萌芽试样图像具有相等的能量值。腐烂、裂纹和良好的样品图像具有相同的均匀性值,其次是皮肤损伤和发芽马铃薯。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信