Robust IMU/UWB integration for indoor pedestrian navigation

H. Benzerrouk, A. Nebylov
{"title":"Robust IMU/UWB integration for indoor pedestrian navigation","authors":"H. Benzerrouk, A. Nebylov","doi":"10.23919/ICINS.2018.8405844","DOIUrl":null,"url":null,"abstract":"Usually in Pedestrian navigation, indirect Kalman filtering approach is used for sensors fusion. In this research, it is proposed to outperform this approach by the use of direct filtering method. Based on MEMS IMU and UWB positioning, we propose the use of modern algorithms developed recently with modified version of EKF; Sigma Point Kalman Filters (SPKF), and recently developed Cubature Kalman Filter (CKF) as a superior alternative to standard filters. The CKF improves the mean and covariance propagation consequently comparing with EKF and SPKF (UKF, CDKF). Although the CKF provides a better estimate of the orientation, velocity and position with Zero velocity UPdaTes (ZUPT) and Zero Angular Rate UpdaTes (ZARUT) measurements. Robust IMU/UWB navigation system is achieved based on robust Student-t based extended Kalman filter and other variants.","PeriodicalId":243907,"journal":{"name":"2018 25th Saint Petersburg International Conference on Integrated Navigation Systems (ICINS)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 25th Saint Petersburg International Conference on Integrated Navigation Systems (ICINS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICINS.2018.8405844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

Usually in Pedestrian navigation, indirect Kalman filtering approach is used for sensors fusion. In this research, it is proposed to outperform this approach by the use of direct filtering method. Based on MEMS IMU and UWB positioning, we propose the use of modern algorithms developed recently with modified version of EKF; Sigma Point Kalman Filters (SPKF), and recently developed Cubature Kalman Filter (CKF) as a superior alternative to standard filters. The CKF improves the mean and covariance propagation consequently comparing with EKF and SPKF (UKF, CDKF). Although the CKF provides a better estimate of the orientation, velocity and position with Zero velocity UPdaTes (ZUPT) and Zero Angular Rate UpdaTes (ZARUT) measurements. Robust IMU/UWB navigation system is achieved based on robust Student-t based extended Kalman filter and other variants.
鲁棒IMU/UWB室内行人导航集成
在行人导航中,通常采用间接卡尔曼滤波方法进行传感器融合。在本研究中,我们提出使用直接滤波方法来超越这种方法。基于MEMS IMU和超宽带定位,我们建议使用最近开发的现代算法和修改版本的EKF;Sigma点卡尔曼滤波器(SPKF),以及最近开发的cuature卡尔曼滤波器(CKF)作为标准滤波器的优越替代方案。与EKF和SPKF (UKF, CDKF)相比,CKF改善了均值和协方差的传播。虽然CKF通过零速度更新(ZUPT)和零角速率更新(ZARUT)测量提供了更好的方向、速度和位置估计。鲁棒IMU/UWB导航系统是在基于鲁棒Student-t的扩展卡尔曼滤波及其变体的基础上实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信