{"title":"Integrating CNF and BDD based SAT solvers","authors":"S. Gopalakrishnan, V. Durairaj, P. Kalla","doi":"10.1109/HLDVT.2003.1252474","DOIUrl":null,"url":null,"abstract":"This paper presents an integrated infrastructure of CNF and BDD based tools to solve the Boolean Satisfiability problem. We use both CNF and BDDs not only as a means of representation, but also to efficiently analyze, prune and guide the search. We describe a method to successfully re-orient the decision making strategies of contemporary CNF tools in a manner that enables an efficient integration with BDDs. Keeping in mind that BDDs suffer from memory explosion problems, we describe learning-based search space pruning techniques that augment the already employed conflict analysis procedures of CNF tools. Our infrastructure is targeted towards solving those hard-to-solve instances where contemporary CNF tools invest significant search times. Experiments conducted over a wide range of benchmarks demonstrate the promise of our approach.","PeriodicalId":344813,"journal":{"name":"Eighth IEEE International High-Level Design Validation and Test Workshop","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eighth IEEE International High-Level Design Validation and Test Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HLDVT.2003.1252474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
This paper presents an integrated infrastructure of CNF and BDD based tools to solve the Boolean Satisfiability problem. We use both CNF and BDDs not only as a means of representation, but also to efficiently analyze, prune and guide the search. We describe a method to successfully re-orient the decision making strategies of contemporary CNF tools in a manner that enables an efficient integration with BDDs. Keeping in mind that BDDs suffer from memory explosion problems, we describe learning-based search space pruning techniques that augment the already employed conflict analysis procedures of CNF tools. Our infrastructure is targeted towards solving those hard-to-solve instances where contemporary CNF tools invest significant search times. Experiments conducted over a wide range of benchmarks demonstrate the promise of our approach.