R. A. L. Moreto, Douglas Rocha, C. Thomaz, A. Mariano, S. Gimenez
{"title":"Interactive Evolutionary Approach to Reduce the Optimization Cycle Time of a Low Noise Amplifier","authors":"R. A. L. Moreto, Douglas Rocha, C. Thomaz, A. Mariano, S. Gimenez","doi":"10.1145/3338852.3339864","DOIUrl":null,"url":null,"abstract":"Nowadays, wireless communications at frequencies of gigahertz have an increasing demand due to the ever-increasing number of electronic devices that uses this type of communication. They are implemented by Radio Frequency (RF) circuits. However, the design of RF circuits is difficult, time-consuming and based on designer knowledge and experience. This work proposes an interactive evolutionary approach using the genetic algorithm, which is implemented in the in-house iMTGSPICE optimization tool, to perform the optimization process of a robust (corner and Monte Carlo analyses) Ultra Low-Power Low Noise Amplifier (LNA) dedicated to Wireless Sensor Networks (WSN), which is implemented in a 130 nm Bulk CMOS technology. We performed two experimental studies to optimize the LNA. The first one used the interactive approach of iMTGSPICE, which was monitored and assisted by a beginner designer during the optimization process. The second one used the conventional approach of iMTGSPICE (non-interactive), which was not assisted by a designer during the optimization process. The obtained results demonstrated that the interactive approach of iMTGSPICE performed the optimization process of the robust LNA around 94% faster (in approximately 20 minutes only) than the noninteractive evolutionary approach (in approximately 6 hours).","PeriodicalId":184401,"journal":{"name":"2019 32nd Symposium on Integrated Circuits and Systems Design (SBCCI)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 32nd Symposium on Integrated Circuits and Systems Design (SBCCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3338852.3339864","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Nowadays, wireless communications at frequencies of gigahertz have an increasing demand due to the ever-increasing number of electronic devices that uses this type of communication. They are implemented by Radio Frequency (RF) circuits. However, the design of RF circuits is difficult, time-consuming and based on designer knowledge and experience. This work proposes an interactive evolutionary approach using the genetic algorithm, which is implemented in the in-house iMTGSPICE optimization tool, to perform the optimization process of a robust (corner and Monte Carlo analyses) Ultra Low-Power Low Noise Amplifier (LNA) dedicated to Wireless Sensor Networks (WSN), which is implemented in a 130 nm Bulk CMOS technology. We performed two experimental studies to optimize the LNA. The first one used the interactive approach of iMTGSPICE, which was monitored and assisted by a beginner designer during the optimization process. The second one used the conventional approach of iMTGSPICE (non-interactive), which was not assisted by a designer during the optimization process. The obtained results demonstrated that the interactive approach of iMTGSPICE performed the optimization process of the robust LNA around 94% faster (in approximately 20 minutes only) than the noninteractive evolutionary approach (in approximately 6 hours).