Stereo visual odometry failure recovery using monocular techniques

Riccardo Giubilato, S. Chiodini, M. Pertile, S. Debei
{"title":"Stereo visual odometry failure recovery using monocular techniques","authors":"Riccardo Giubilato, S. Chiodini, M. Pertile, S. Debei","doi":"10.1109/METROAEROSPACE.2017.7999555","DOIUrl":null,"url":null,"abstract":"Stereo visual odometry is one of the most accurate dead-reckoning methods for estimating the motion of a moving vehicle but it strongly depends on a robust matching of the image features in the stereo frame. If a stereo camera is observing the environment from a critically small distance the two field of view can be subjected to poor or absent overlapping. That leads to failure of the computation pipeline because no stereo observations can be made. In this paper, we present a solution to this problem by taking advantage of monocular visual odometry techniques to propagate the pose estimations when the number of feature matches in the stereo frame is too low to produce accurate results. The proposed algorithm is tested on a challenging scenario for a stereo setup and a ground truth is given by mounting the stereo camera on a linear slide. Experimental results show that our algorithm is able to successfully recover failures of the stereo pipeline, obtaining a final position error of 1.2% of the total travelled path length in our dataset.","PeriodicalId":229414,"journal":{"name":"2017 IEEE International Workshop on Metrology for AeroSpace (MetroAeroSpace)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Workshop on Metrology for AeroSpace (MetroAeroSpace)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/METROAEROSPACE.2017.7999555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Stereo visual odometry is one of the most accurate dead-reckoning methods for estimating the motion of a moving vehicle but it strongly depends on a robust matching of the image features in the stereo frame. If a stereo camera is observing the environment from a critically small distance the two field of view can be subjected to poor or absent overlapping. That leads to failure of the computation pipeline because no stereo observations can be made. In this paper, we present a solution to this problem by taking advantage of monocular visual odometry techniques to propagate the pose estimations when the number of feature matches in the stereo frame is too low to produce accurate results. The proposed algorithm is tested on a challenging scenario for a stereo setup and a ground truth is given by mounting the stereo camera on a linear slide. Experimental results show that our algorithm is able to successfully recover failures of the stereo pipeline, obtaining a final position error of 1.2% of the total travelled path length in our dataset.
立体视觉里程计故障单目恢复技术
立体视觉里程计是一种最精确的估计运动车辆运动的航位推算方法,但它在很大程度上依赖于立体框架中图像特征的鲁棒匹配。如果立体相机从极短的距离观察环境,则两个视场可能会出现较差或不重叠的情况。这将导致计算管道的失败,因为无法进行立体观测。在本文中,我们提出了一种解决这一问题的方法,即当立体帧中的特征匹配数量过低而无法产生准确结果时,利用单目视觉里程计技术传播姿态估计。提出的算法在一个具有挑战性的场景中进行了立体设置测试,并通过将立体摄像机安装在线性幻灯片上给出了地面真相。实验结果表明,该算法能够成功地恢复立体管道的故障,最终位置误差为数据集总行进路径长度的1.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信