A lightweight approach for predicting errors in chess matches

Giovanni V. Comarela, D. Silva
{"title":"A lightweight approach for predicting errors in chess matches","authors":"Giovanni V. Comarela, D. Silva","doi":"10.5753/eniac.2021.18296","DOIUrl":null,"url":null,"abstract":"O xadrez vem se tornando cada vez mais popular e acessível. O xadrez online permite que jogadores se desafiem de diferentes partes do mundo, possibilitando novas formas de aprendizagem do jogo e interação entre usuários na Web. Com o crescimento de popularidade, existe a possibilidade de empoderar jogadores casuais com ricas análises computacionais, que podem auxiliar no processo de aprendizagem do jogo. Uma das formas de analisar partidas de xadrez é através do estudo de erros. Nesse contexto, uma nova abordagem para a tarefa de predição de erros no xadrez é apresentada. A motivação desse trabalho é que saber quando jogadores tem mais chances de errar, é saber que tipos de situações apresentam mais dificuldades no processo de tomada de decisão. Para esse fim, foi adicionada uma camada de abstração no já estudado problema de predição de erro, acrescentando features baseadas em grafos aos modelos de aprendizagem de máquina. Os resultados indicam um aumento na acurácia dos modelos testados, melhorando os resultados obtidos em estudos recentes.","PeriodicalId":318676,"journal":{"name":"Anais do XVIII Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2021)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XVIII Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/eniac.2021.18296","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

O xadrez vem se tornando cada vez mais popular e acessível. O xadrez online permite que jogadores se desafiem de diferentes partes do mundo, possibilitando novas formas de aprendizagem do jogo e interação entre usuários na Web. Com o crescimento de popularidade, existe a possibilidade de empoderar jogadores casuais com ricas análises computacionais, que podem auxiliar no processo de aprendizagem do jogo. Uma das formas de analisar partidas de xadrez é através do estudo de erros. Nesse contexto, uma nova abordagem para a tarefa de predição de erros no xadrez é apresentada. A motivação desse trabalho é que saber quando jogadores tem mais chances de errar, é saber que tipos de situações apresentam mais dificuldades no processo de tomada de decisão. Para esse fim, foi adicionada uma camada de abstração no já estudado problema de predição de erro, acrescentando features baseadas em grafos aos modelos de aprendizagem de máquina. Os resultados indicam um aumento na acurácia dos modelos testados, melhorando os resultados obtidos em estudos recentes.
预测国际象棋比赛错误的轻量级方法
国际象棋正变得越来越受欢迎和负担得起。在线象棋允许来自世界各地的玩家挑战自己,为网络用户之间的游戏学习和互动提供了新的方式。随着游戏越来越受欢迎,休闲玩家有可能通过丰富的计算分析来帮助游戏学习过程。分析国际象棋比赛的一种方法是研究错误。在此背景下,提出了一种新的国际象棋误差预测方法。这项工作的动机是,知道什么时候玩家更有可能出错,就是知道哪种情况在决策过程中更困难。为此,在已经研究过的误差预测问题中添加了一个抽象层,在机器学习模型中添加了基于图的特征。结果表明,所测试模型的准确性有所提高,改进了最近的研究结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信