Work-in-Progress: A Deep Learning Strategy for I/O Scheduling in Storage Systems

Ashkan Farhangi, Jiang Bian, Jun Wang, Zhishan Guo
{"title":"Work-in-Progress: A Deep Learning Strategy for I/O Scheduling in Storage Systems","authors":"Ashkan Farhangi, Jiang Bian, Jun Wang, Zhishan Guo","doi":"10.1109/RTSS46320.2019.00066","DOIUrl":null,"url":null,"abstract":"Under the big data era, there is a crucial need to improve the performance of storage systems for data-intensive applications. Data-intensive applications tend to behave in a predictable manner, which can be exploited for improving the performance of the storage system. At the storage level, we propose a deep recurrent neural network that learns the patterns of I/O requests and predicts the upcoming ones, such that memory contents can be pre-loaded at the right time to prevent cache/memory misses. Preliminary experimental results, on two real-world I/O logs of storage systems (from financial and web search), are reported-they partially demonstrate the effectiveness of the proposed method.","PeriodicalId":102892,"journal":{"name":"2019 IEEE Real-Time Systems Symposium (RTSS)","volume":"35 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Real-Time Systems Symposium (RTSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTSS46320.2019.00066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Under the big data era, there is a crucial need to improve the performance of storage systems for data-intensive applications. Data-intensive applications tend to behave in a predictable manner, which can be exploited for improving the performance of the storage system. At the storage level, we propose a deep recurrent neural network that learns the patterns of I/O requests and predicts the upcoming ones, such that memory contents can be pre-loaded at the right time to prevent cache/memory misses. Preliminary experimental results, on two real-world I/O logs of storage systems (from financial and web search), are reported-they partially demonstrate the effectiveness of the proposed method.
正在进行的工作:存储系统I/O调度的深度学习策略
在大数据时代,提高存储系统的性能是数据密集型应用的迫切需求。数据密集型应用程序倾向于以可预测的方式运行,这可以用于提高存储系统的性能。在存储层面,我们提出了一个深度循环神经网络,它学习I/O请求的模式并预测即将到来的请求,这样内存内容可以在正确的时间预加载,以防止缓存/内存丢失。本文报告了两个存储系统的实际I/O日志(来自金融和web搜索)的初步实验结果,它们部分地证明了所提出方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信