Penglei Liu, Qieshi Zhang, Jin Zhang, Fei Wang, Jun Cheng
{"title":"MFPN-6D : Real-time One-stage Pose Estimation of Objects on RGB Images","authors":"Penglei Liu, Qieshi Zhang, Jin Zhang, Fei Wang, Jun Cheng","doi":"10.1109/ICRA48506.2021.9561878","DOIUrl":null,"url":null,"abstract":"6D pose estimation of objects is an important part of robot grasping. The latest research trend on 6D pose estimation is to train a deep neural network to directly predict the 2D projection position of the 3D key points from the image, establish the corresponding relationship, and finally use Pespective-n-Point (PnP) algorithm performs pose estimation. The current challenge of pose estimation is that when the object texture-less, occluded and scene clutter, the detection accuracy will be reduced, and most of the existing algorithm models are large and cannot take the real-time requirements. In this paper, we introduce a Multi-directional Feature Pyramid Network, MFPN, which can efficiently integrate and utilize features. We combined the Cross Stage Partial Network (CSPNet) with MFPN to design a new network for 6D pose estimation, MFPN-6D. At the same time, we propose a new confidence calculation method for object pose estimation, which can fully consider spatial information and plane information. At last, we tested our method on the LINEMOD and Occluded-LINEMOD datasets. The experimental results demonstrate that our algorithm is robust to textureless materials and occlusion, while running more efficiently compared to other methods.","PeriodicalId":108312,"journal":{"name":"2021 IEEE International Conference on Robotics and Automation (ICRA)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA48506.2021.9561878","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
6D pose estimation of objects is an important part of robot grasping. The latest research trend on 6D pose estimation is to train a deep neural network to directly predict the 2D projection position of the 3D key points from the image, establish the corresponding relationship, and finally use Pespective-n-Point (PnP) algorithm performs pose estimation. The current challenge of pose estimation is that when the object texture-less, occluded and scene clutter, the detection accuracy will be reduced, and most of the existing algorithm models are large and cannot take the real-time requirements. In this paper, we introduce a Multi-directional Feature Pyramid Network, MFPN, which can efficiently integrate and utilize features. We combined the Cross Stage Partial Network (CSPNet) with MFPN to design a new network for 6D pose estimation, MFPN-6D. At the same time, we propose a new confidence calculation method for object pose estimation, which can fully consider spatial information and plane information. At last, we tested our method on the LINEMOD and Occluded-LINEMOD datasets. The experimental results demonstrate that our algorithm is robust to textureless materials and occlusion, while running more efficiently compared to other methods.