{"title":"Determination of electric properties of heterogeneous systems using the contact and noncontact scanning force microscopy (SFM)","authors":"E. Schulz, H. Sturm, W. Stark, V. Bovtoun","doi":"10.1109/ISE.1996.578094","DOIUrl":null,"url":null,"abstract":"With an extended contact and non-contact mode scanning force microscope samples with different heterogeneous electrical properties can be characterized. The contact mode method allows the determination of local electric conductivities of heterogeneous systems at the sample surfaces. An interpretation of this behaviour can be obtained in combination with other SFM modes such as topography, friction and compliance used simultaneously. The non-contact mode SFM allows to get more information about the local surface charge of heterogeneous samples. In this paper two new SFM approaches will be discussed on examples of carbon-fibre reinforced, organic and ceramic materials.","PeriodicalId":425004,"journal":{"name":"9th International Symposium on Electrets (ISE 9) Proceedings","volume":"1995 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"9th International Symposium on Electrets (ISE 9) Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISE.1996.578094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
With an extended contact and non-contact mode scanning force microscope samples with different heterogeneous electrical properties can be characterized. The contact mode method allows the determination of local electric conductivities of heterogeneous systems at the sample surfaces. An interpretation of this behaviour can be obtained in combination with other SFM modes such as topography, friction and compliance used simultaneously. The non-contact mode SFM allows to get more information about the local surface charge of heterogeneous samples. In this paper two new SFM approaches will be discussed on examples of carbon-fibre reinforced, organic and ceramic materials.