Optimal output assignment and the maximum number of implicants needed to cover the multiple-valued logic functions

Y. Hata, F. Miyawaki, K. Yamato
{"title":"Optimal output assignment and the maximum number of implicants needed to cover the multiple-valued logic functions","authors":"Y. Hata, F. Miyawaki, K. Yamato","doi":"10.1109/ISMVL.1992.186821","DOIUrl":null,"url":null,"abstract":"Optimal output assignment is proposed to reduce the number of implicants in a minimal sum-of-products expression, where sum refers to TSUM. Some bounds on the maximum number of implicants needed to cover an output permuted function are clarified. One-variable output permuted functions require at most p-1 implicants in their minimal sum-of-products expressions, where p is the radix. Two-variable functions with radix between three and six are analyzed. Some speculations on the minimum number of the implicants are confirmed for functions with a higher radix and more than two variables. Computer simulation shows that output-permuted functions require 15% fewer implicants on the average.<<ETX>>","PeriodicalId":127091,"journal":{"name":"[1992] Proceedings The Twenty-Second International Symposium on Multiple-Valued Logic","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1992] Proceedings The Twenty-Second International Symposium on Multiple-Valued Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.1992.186821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Optimal output assignment is proposed to reduce the number of implicants in a minimal sum-of-products expression, where sum refers to TSUM. Some bounds on the maximum number of implicants needed to cover an output permuted function are clarified. One-variable output permuted functions require at most p-1 implicants in their minimal sum-of-products expressions, where p is the radix. Two-variable functions with radix between three and six are analyzed. Some speculations on the minimum number of the implicants are confirmed for functions with a higher radix and more than two variables. Computer simulation shows that output-permuted functions require 15% fewer implicants on the average.<>
覆盖多值逻辑函数所需的最优输出分配和最大隐含数
提出了最优输出分配,以减少最小积和表达式中的隐含数,其中sum指TSUM。澄清了覆盖输出排列函数所需的最大隐含数的一些界限。单变量输出排列函数在其最小积和表达式中最多需要p-1个隐含项,其中p是基数。对基数为3 ~ 6的二变量函数进行了分析。对于具有较高基数和两个以上变量的函数,对最小蕴涵数的一些推测得到了证实。计算机模拟表明,输出排列函数需要的隐含量平均减少15%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信