On a Memory-Based Realization of Sparse Multiple-Valued Functions

Tsutomu Sasao
{"title":"On a Memory-Based Realization of Sparse Multiple-Valued Functions","authors":"Tsutomu Sasao","doi":"10.1109/ISMVL.2018.00017","DOIUrl":null,"url":null,"abstract":"This paper presents multi-valued (MV) functions, which are generalizations of index generation functions and switching functions. First, an efficient memory-based realization of sparse MV functions, where the number of specified combinations is much smaller than the number of possible input combinations, is presented. Then, a formula for the expected number of variables to represent random sparse MV functions is derived. Finally, the theoretical analysis is compared with the experimental results.","PeriodicalId":434323,"journal":{"name":"2018 IEEE 48th International Symposium on Multiple-Valued Logic (ISMVL)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 48th International Symposium on Multiple-Valued Logic (ISMVL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.2018.00017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents multi-valued (MV) functions, which are generalizations of index generation functions and switching functions. First, an efficient memory-based realization of sparse MV functions, where the number of specified combinations is much smaller than the number of possible input combinations, is presented. Then, a formula for the expected number of variables to represent random sparse MV functions is derived. Finally, the theoretical analysis is compared with the experimental results.
基于记忆的稀疏多值函数实现
本文提出了多值函数,它是索引生成函数和转换函数的推广。首先,提出了一种基于内存的稀疏MV函数的高效实现,其中指定组合的数量远远小于可能输入组合的数量。然后,导出了表示随机稀疏MV函数的期望变量数的公式。最后,将理论分析与实验结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信