{"title":"Handwriting analysis for assistant diagnosis of neuromuscular disorders","authors":"Min Liu, Guoli Wang","doi":"10.1109/BMEI.2013.6746939","DOIUrl":null,"url":null,"abstract":"This paper presents a handwriting movement analysis approach and its application in assistant diagnosis of the neuromuscular disorders rehabilitation by measuring the movement smoothness. The time-varying primitives extraction algorithm is developed to segment the handwriting strokes from natural handwriting data. Further seven smoothness metrics are proposed to evaluate the motor control abilities of neuromuscular disorders and normal people. In experimental studies, the real world handwriting data from five neuromuscular disorders' are acquired to verify the developed algorithm as well as the proposed smoothness criteria. Comparative analysis of the experimental results demonstrates that the presented approach can work well in assisting the rehabilitation diagnosis.","PeriodicalId":163211,"journal":{"name":"2013 6th International Conference on Biomedical Engineering and Informatics","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 6th International Conference on Biomedical Engineering and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BMEI.2013.6746939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
This paper presents a handwriting movement analysis approach and its application in assistant diagnosis of the neuromuscular disorders rehabilitation by measuring the movement smoothness. The time-varying primitives extraction algorithm is developed to segment the handwriting strokes from natural handwriting data. Further seven smoothness metrics are proposed to evaluate the motor control abilities of neuromuscular disorders and normal people. In experimental studies, the real world handwriting data from five neuromuscular disorders' are acquired to verify the developed algorithm as well as the proposed smoothness criteria. Comparative analysis of the experimental results demonstrates that the presented approach can work well in assisting the rehabilitation diagnosis.