I-LOAM: Intensity Enhanced LiDAR Odometry and Mapping

Yeong-Sang Park, Hyesu Jang, Ayoung Kim
{"title":"I-LOAM: Intensity Enhanced LiDAR Odometry and Mapping","authors":"Yeong-Sang Park, Hyesu Jang, Ayoung Kim","doi":"10.1109/UR49135.2020.9144987","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce an extension to the existing LiDAR Odometry and Mapping (LOAM) [1] by additionally considering LiDAR intensity. In an urban environment, planar structures from buildings and roads often introduce ambiguity in a certain direction. Incorporation of the intensity value to the cost function prevents divergence occurence from this structural ambiguity, thereby yielding better odometry and mapping in terms of accuracy. Specifically, we have updated the edge and plane point correspondence search to include intensity. This simple but effective strategy shows meaningful improvement over the existing LOAM. The proposed method is validated using the KITTI dataset.","PeriodicalId":360208,"journal":{"name":"2020 17th International Conference on Ubiquitous Robots (UR)","volume":"139 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 17th International Conference on Ubiquitous Robots (UR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UR49135.2020.9144987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In this paper, we introduce an extension to the existing LiDAR Odometry and Mapping (LOAM) [1] by additionally considering LiDAR intensity. In an urban environment, planar structures from buildings and roads often introduce ambiguity in a certain direction. Incorporation of the intensity value to the cost function prevents divergence occurence from this structural ambiguity, thereby yielding better odometry and mapping in terms of accuracy. Specifically, we have updated the edge and plane point correspondence search to include intensity. This simple but effective strategy shows meaningful improvement over the existing LOAM. The proposed method is validated using the KITTI dataset.
I-LOAM:强度增强激光雷达测程和测绘
在本文中,我们通过额外考虑激光雷达强度,对现有的激光雷达测程和测绘(LOAM)[1]进行了扩展。在城市环境中,来自建筑和道路的平面结构往往会在某个方向上引入歧义。将强度值合并到成本函数中可以防止这种结构模糊性产生分歧,从而在准确性方面产生更好的里程计和映射。具体来说,我们已经更新了边缘和面点对应搜索,以包括强度。这种简单但有效的策略比现有的LOAM有意义的改进。利用KITTI数据集对该方法进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信