Ekta Sharma, Alfredo Bautista, E. Pistono, P. Ferrari, S. Bourdel
{"title":"81–86 GHz VCO for Backhaul application with S-CPS based differential inductor in BiCMOS 55nm technology","authors":"Ekta Sharma, Alfredo Bautista, E. Pistono, P. Ferrari, S. Bourdel","doi":"10.1109/NEWCAS.2015.7182033","DOIUrl":null,"url":null,"abstract":"This paper presents the design of a mm-wave VCO for Backhaul applications. This VCO operates between 81-86 GHz and was designed in the BiCMOS 55 nm technology. The innovation is linked to the use of a slow-wave coplanar strip (S-CPS) as a differential inductor. Thanks to high quality factor (≈ 33) of S-CPS, the phase noise and power consumption are improved. The proposed VCO is compared to the classical VCO (lumped inductor and varactor based). The S-CPS based VCO exhibits 3 dB less phase noise, and lower power consumption, with a phase noise of -111 dBc/Hz at 10 MHz offset and a power consumption of 6.84 mW. With 1.2 V supply, the tuning range reaches 7.9%, which is enough for the targeted application.","PeriodicalId":404655,"journal":{"name":"2015 IEEE 13th International New Circuits and Systems Conference (NEWCAS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 13th International New Circuits and Systems Conference (NEWCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEWCAS.2015.7182033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
This paper presents the design of a mm-wave VCO for Backhaul applications. This VCO operates between 81-86 GHz and was designed in the BiCMOS 55 nm technology. The innovation is linked to the use of a slow-wave coplanar strip (S-CPS) as a differential inductor. Thanks to high quality factor (≈ 33) of S-CPS, the phase noise and power consumption are improved. The proposed VCO is compared to the classical VCO (lumped inductor and varactor based). The S-CPS based VCO exhibits 3 dB less phase noise, and lower power consumption, with a phase noise of -111 dBc/Hz at 10 MHz offset and a power consumption of 6.84 mW. With 1.2 V supply, the tuning range reaches 7.9%, which is enough for the targeted application.