Single-layer microfluidic “spring” diodes via optofluidic lithography for ultra-low reynolds number applications

R. Sochol, C. Glick, A. Lu, M. Wah, T. Brubaker, Kye Y. Lee, K. Iwai, Luke P. Lee, Liwei Lin
{"title":"Single-layer microfluidic “spring” diodes via optofluidic lithography for ultra-low reynolds number applications","authors":"R. Sochol, C. Glick, A. Lu, M. Wah, T. Brubaker, Kye Y. Lee, K. Iwai, Luke P. Lee, Liwei Lin","doi":"10.1109/TRANSDUCERS.2013.6627240","DOIUrl":null,"url":null,"abstract":"Microfluidic components that are capable of autonomous “on-chip” operations at ultra-low Reynolds number (e.g., Re <; 0.2) are critical to the advancement of integrated fluidic circuitry for chemical and biological applications, including point-of-care (POC) molecular diagnostics and on-site chemical detection. Previously, researchers have utilized dynamic resistive elements, such as suspended microbeads and rotational microstructures, to rectify Re <; 0.2 flow; however, such systems require hydrodynamic forces to return the resistive elements to their “closed state” positions, allowing undesired reverse flow during this process. Conversely, double-layer “flap-type” check valves immediately return to their closed state in the absence of forward flow; unfortunately, such valves have exhibited limited functionality for Re <; ~0.3 flow. To overcome these issues, here we introduce single-layer microfluidic “spring” diodes, which utilize free-standing polymeric microsprings that: (i) compress to promote forward flow, (ii) return to the closed position in the absence of forward flow, and (iii) remain in the closed position to obstruct reverse flow. The free-standing microspring elements were constructed in situ via optofluidic lithography processes. Experimental results revealed an improvement in Di performance with increasing Re for Re <; 0.1; however, Di's were found to decrease for Re > 0.1. At maximum, we observed an experimental average Di of 4.10±0.01, corresponding to 0.075 <; Re <; 0.1 fluid flow.","PeriodicalId":202479,"journal":{"name":"2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TRANSDUCERS.2013.6627240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Microfluidic components that are capable of autonomous “on-chip” operations at ultra-low Reynolds number (e.g., Re <; 0.2) are critical to the advancement of integrated fluidic circuitry for chemical and biological applications, including point-of-care (POC) molecular diagnostics and on-site chemical detection. Previously, researchers have utilized dynamic resistive elements, such as suspended microbeads and rotational microstructures, to rectify Re <; 0.2 flow; however, such systems require hydrodynamic forces to return the resistive elements to their “closed state” positions, allowing undesired reverse flow during this process. Conversely, double-layer “flap-type” check valves immediately return to their closed state in the absence of forward flow; unfortunately, such valves have exhibited limited functionality for Re <; ~0.3 flow. To overcome these issues, here we introduce single-layer microfluidic “spring” diodes, which utilize free-standing polymeric microsprings that: (i) compress to promote forward flow, (ii) return to the closed position in the absence of forward flow, and (iii) remain in the closed position to obstruct reverse flow. The free-standing microspring elements were constructed in situ via optofluidic lithography processes. Experimental results revealed an improvement in Di performance with increasing Re for Re <; 0.1; however, Di's were found to decrease for Re > 0.1. At maximum, we observed an experimental average Di of 4.10±0.01, corresponding to 0.075 <; Re <; 0.1 fluid flow.
单层微流控“弹簧”二极管通过光流光刻超低雷诺数应用
能够在超低雷诺数(例如,re0.1)下自主“片上”操作的微流控元件。最大时,实验平均Di为4.10±0.01,对应于0.075 <;Re <;0.1流体流动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信