Modified affinity propagation clustering

Jing Zhang, Mingyi He, Yuchao Dai
{"title":"Modified affinity propagation clustering","authors":"Jing Zhang, Mingyi He, Yuchao Dai","doi":"10.1109/ChinaSIP.2014.6889294","DOIUrl":null,"url":null,"abstract":"Affinity propagation clustering is an efficient clustering technique that does not require prior knowledge of the number of clusters. However, it sets the input preferences without considering data set distribution and competition in the former iteration is ignored when updating messages passing between data points. This paper presents a modified affinity propagation algorithm. Firstly, preference for each data point to serve as an exemplar is computed self-adaptively based on data set distribution; then encouragement and chastisement mechanism is introduced for updating message of availability. Experimental results on standard data sets and synthetic data sets demonstrate feasibility and effectiveness of the proposed algorithm.","PeriodicalId":248977,"journal":{"name":"2014 IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ChinaSIP.2014.6889294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Affinity propagation clustering is an efficient clustering technique that does not require prior knowledge of the number of clusters. However, it sets the input preferences without considering data set distribution and competition in the former iteration is ignored when updating messages passing between data points. This paper presents a modified affinity propagation algorithm. Firstly, preference for each data point to serve as an exemplar is computed self-adaptively based on data set distribution; then encouragement and chastisement mechanism is introduced for updating message of availability. Experimental results on standard data sets and synthetic data sets demonstrate feasibility and effectiveness of the proposed algorithm.
改进的亲和传播聚类
亲和传播聚类是一种高效的聚类技术,它不需要事先知道聚类的数量。但是,它设置输入首选项时没有考虑数据集分布,并且在更新数据点之间传递的消息时忽略了前一次迭代中的竞争。提出了一种改进的亲和传播算法。首先,根据数据集分布自适应计算每个数据点作为样本的偏好;然后引入了激励和惩罚机制来更新可用性消息。在标准数据集和合成数据集上的实验结果验证了该算法的可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信