Impacts of $n$-GaN Doping Concentration on Gate Reliability of $p-n$ Junction/AlGaN/GaN HEMTs

Chengcai Wang, Haohao Chen, Zuoheng Jiang, Junting Chen, M. Hua
{"title":"Impacts of $n$-GaN Doping Concentration on Gate Reliability of $p-n$ Junction/AlGaN/GaN HEMTs","authors":"Chengcai Wang, Haohao Chen, Zuoheng Jiang, Junting Chen, M. Hua","doi":"10.1109/ISPSD57135.2023.10147583","DOIUrl":null,"url":null,"abstract":"In this work, the <tex>$p-n$</tex> junction (PNJ)/AlGaN/GaN HEMTs with different effective <tex>$n$</tex>-GaN doping concentrations (<tex>$N_{\\mathrm{D}}$</tex>) of <tex>$1.7\\times 10^{20}$</tex> cm<sup>−3</sup>, <tex>$2.6\\times 10^{19}$</tex> cm<sup>−3</sup> and <tex>$1\\times 10^{17}$</tex> cm<sup>−3</sup> are comparatively studied to reveal the impacts of <tex>$N_{\\mathrm{D}}$</tex> on gate reliability. With lower <tex>$N_{\\mathrm{D}}$</tex>, gate leakage reduces, and forward gate breakdown voltage boosts up to 18.6 V, whereas the maximum applicable gate voltage for a 10-year lifetime will not continually increase when <tex>$N_{\\mathrm{D}}$</tex> decreases to <tex>$1\\times 10^{17}$</tex> cm<sup>−3</sup>. This feature is attributed to premature breakdown caused by electric-field crowding at the surface of the fully depleted n-GaN. To fully exploit the reliability of the PNJ-HEMTs, it is suggested that the <tex>$N_{\\mathrm{D}}$</tex> of PNJ-HEMTs should be carefully designed to widen the depletion region in <tex>$p-n$</tex> junction appropriately, while premature breakdown caused by electric-field crowding at the surface should be avoided.","PeriodicalId":344266,"journal":{"name":"2023 35th International Symposium on Power Semiconductor Devices and ICs (ISPSD)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 35th International Symposium on Power Semiconductor Devices and ICs (ISPSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPSD57135.2023.10147583","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, the $p-n$ junction (PNJ)/AlGaN/GaN HEMTs with different effective $n$-GaN doping concentrations ($N_{\mathrm{D}}$) of $1.7\times 10^{20}$ cm−3, $2.6\times 10^{19}$ cm−3 and $1\times 10^{17}$ cm−3 are comparatively studied to reveal the impacts of $N_{\mathrm{D}}$ on gate reliability. With lower $N_{\mathrm{D}}$, gate leakage reduces, and forward gate breakdown voltage boosts up to 18.6 V, whereas the maximum applicable gate voltage for a 10-year lifetime will not continually increase when $N_{\mathrm{D}}$ decreases to $1\times 10^{17}$ cm−3. This feature is attributed to premature breakdown caused by electric-field crowding at the surface of the fully depleted n-GaN. To fully exploit the reliability of the PNJ-HEMTs, it is suggested that the $N_{\mathrm{D}}$ of PNJ-HEMTs should be carefully designed to widen the depletion region in $p-n$ junction appropriately, while premature breakdown caused by electric-field crowding at the surface should be avoided.
n -GaN掺杂浓度对p-n结/AlGaN/GaN hemt栅可靠性的影响
本文研究了不同n -GaN有效掺杂浓度($N_{\ mathm {D} $)分别为$1.7\乘以10^{20}$ cm−3、$2.6\乘以10^{19}$ cm−3和$1\乘以10^{17}$ cm−3的p-n$结(PNJ)/AlGaN/GaN HEMTs,揭示了$N_{\ mathm {D} $对栅极可靠性的影响。当$N_{\ mathm {D}}$较低时,栅极漏电减少,正向栅极击穿电压提高到18.6 V,而当$N_{\ mathm {D}}$降低到$1\ × 10^{17}$ cm−3时,10年寿命的最大适用栅极电压不会持续增加。这一特征是由于完全耗尽的n-GaN表面的电场拥挤引起的过早击穿。为了充分发挥pnj - hemt的可靠性,建议仔细设计pnj - hemt的$N_{\数学{D}}$,适当扩大$p-n$结的耗尽区,同时避免表面电场拥挤引起的过早击穿。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信