{"title":"Defect Localization and Analysis of Compound Semiconductors using ECCI, CBED, and STEM-in-SEM for an All-In-Situ Workflow Using a FIB/SEM Microscope","authors":"Adam Stokes, Libor Strakoš, T. Landin","doi":"10.31399/asm.cp.istfa2022p0211","DOIUrl":null,"url":null,"abstract":"\n Complex failure analysis often requires the use of multiple characterization instruments. For example, a defect or failure may be localized using one tool, whereas the subsequent marking, precision targeting, and high-resolution analysis may require completely different instruments. As a result, the analysis workflows require sample and operator coordination between instruments and engineers, which leads to lower throughput and success rates. This paper describes a complete in-situ workflow for comprehensive failure analysis processes on a compound semiconductor using a state-of-the-art FIB/SEM system, incorporating electron channeling contrast imaging (ECCI) and a STEM-in-SEM detector used in unison with an insertable detector positioned underneath the sample to capture transmitted electron condensed beam electron diffraction (CBED) micrographs.","PeriodicalId":417175,"journal":{"name":"International Symposium for Testing and Failure Analysis","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium for Testing and Failure Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31399/asm.cp.istfa2022p0211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Complex failure analysis often requires the use of multiple characterization instruments. For example, a defect or failure may be localized using one tool, whereas the subsequent marking, precision targeting, and high-resolution analysis may require completely different instruments. As a result, the analysis workflows require sample and operator coordination between instruments and engineers, which leads to lower throughput and success rates. This paper describes a complete in-situ workflow for comprehensive failure analysis processes on a compound semiconductor using a state-of-the-art FIB/SEM system, incorporating electron channeling contrast imaging (ECCI) and a STEM-in-SEM detector used in unison with an insertable detector positioned underneath the sample to capture transmitted electron condensed beam electron diffraction (CBED) micrographs.