Classification of Microsatellite Instability Status in Slide-level Annotated Colorectal Tumors by Weakly Supervised Deep Learning

Xinyi Yuan, Jun Ruan, Junqiu Yue
{"title":"Classification of Microsatellite Instability Status in Slide-level Annotated Colorectal Tumors by Weakly Supervised Deep Learning","authors":"Xinyi Yuan, Jun Ruan, Junqiu Yue","doi":"10.1109/ITNEC56291.2023.10082276","DOIUrl":null,"url":null,"abstract":"Microsatellite instability (MSI) is a typical pathogenesis of colorectal cancer, and its status is helpful to the diagnosis of related diseases such as Lynch syndrome. In this paper, we propose an adaptive clustering-constrained attention multiple instance learning model based on weak supervision, which can classify the MSI state of H&E- stained images slide-level labeled at a low cost, and achieve an average AUC of 0.91 and an average ACC of 0.83 on a mixed dataset. On the basis of related work, the model integrates the instance classifiers with the bag classifier, and optimizes the clustering algorithm in the MSI classification scene, reducing the complexity of the model, while improving the final accuracy.","PeriodicalId":218770,"journal":{"name":"2023 IEEE 6th Information Technology,Networking,Electronic and Automation Control Conference (ITNEC)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 6th Information Technology,Networking,Electronic and Automation Control Conference (ITNEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITNEC56291.2023.10082276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Microsatellite instability (MSI) is a typical pathogenesis of colorectal cancer, and its status is helpful to the diagnosis of related diseases such as Lynch syndrome. In this paper, we propose an adaptive clustering-constrained attention multiple instance learning model based on weak supervision, which can classify the MSI state of H&E- stained images slide-level labeled at a low cost, and achieve an average AUC of 0.91 and an average ACC of 0.83 on a mixed dataset. On the basis of related work, the model integrates the instance classifiers with the bag classifier, and optimizes the clustering algorithm in the MSI classification scene, reducing the complexity of the model, while improving the final accuracy.
基于弱监督深度学习的结直肠肿瘤微卫星不稳定状态分类
微卫星不稳定性(Microsatellite instability, MSI)是结直肠癌的典型发病机制,其状态有助于Lynch综合征等相关疾病的诊断。本文提出了一种基于弱监督的自适应聚类约束注意力多实例学习模型,该模型能够以较低的成本对H&E染色图像的滑动标记的MSI状态进行分类,并在混合数据集上实现了平均AUC为0.91,平均ACC为0.83。在相关工作的基础上,该模型将实例分类器与袋分类器相结合,优化了MSI分类场景中的聚类算法,降低了模型的复杂度,同时提高了最终的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信