S. Maity, Shuangqin Liu, S. Rouvillois, G. Lorenz, M. Kamon
{"title":"Rapidly analyzing parametric resonance and manufacturing yield of MEMS 2D scanning mirrors using hybrid finite-element/behavioral modeling","authors":"S. Maity, Shuangqin Liu, S. Rouvillois, G. Lorenz, M. Kamon","doi":"10.1117/12.2041067","DOIUrl":null,"url":null,"abstract":"A new hybrid 3D finite-element/behavioral-modeling approach is presented that can be used to accurately predict the nonlinear dynamics (parametric resonance) in electrostatically driven 2D resonant MEMS scanning mirrors. We demonstrate new levels of accuracy and speed for thick SOI scanning mirrors with large scanning angles and validate the modeling approach against measurement on a previously fabricated scanning mirror. The modeling approach is fast and treats the design parameters as variables thus enabling rapid design iterations, automatic sensitivity and statistical yield analyses, and integration with system and circuit simulators for coupled MEMS-IC cosimulation.","PeriodicalId":395835,"journal":{"name":"Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components","volume":"8977 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2041067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
A new hybrid 3D finite-element/behavioral-modeling approach is presented that can be used to accurately predict the nonlinear dynamics (parametric resonance) in electrostatically driven 2D resonant MEMS scanning mirrors. We demonstrate new levels of accuracy and speed for thick SOI scanning mirrors with large scanning angles and validate the modeling approach against measurement on a previously fabricated scanning mirror. The modeling approach is fast and treats the design parameters as variables thus enabling rapid design iterations, automatic sensitivity and statistical yield analyses, and integration with system and circuit simulators for coupled MEMS-IC cosimulation.