Radio Galaxy Classification with wGAN-Supported Augmentation

J. Kummer, L. Rustige, F. Griese, K. Borras, Marcus Brüggen, P. Connor, F. Gaede, G. Kasieczka, P. Schleper
{"title":"Radio Galaxy Classification with wGAN-Supported Augmentation","authors":"J. Kummer, L. Rustige, F. Griese, K. Borras, Marcus Brüggen, P. Connor, F. Gaede, G. Kasieczka, P. Schleper","doi":"10.18420/inf2022_38","DOIUrl":null,"url":null,"abstract":": Novel techniques are indispensable to process the flood of data from the new generation of radio telescopes. In particular, the classification of astronomical sources in images is challenging. Morphological classification of radio galaxies could be automated with deep learning models that require large sets of labelled training data. Here, we demonstrate the use of generative models, specifically Wasserstein GANs (wGAN), to generate artificial data for different classes of radio galaxies. Subsequently, we augment the training data with images from our wGAN. We find that a simple fully-connected neural network for classification can be improved significantly by including generated images into the training set.","PeriodicalId":434189,"journal":{"name":"GI-Jahrestagung","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GI-Jahrestagung","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18420/inf2022_38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

: Novel techniques are indispensable to process the flood of data from the new generation of radio telescopes. In particular, the classification of astronomical sources in images is challenging. Morphological classification of radio galaxies could be automated with deep learning models that require large sets of labelled training data. Here, we demonstrate the use of generative models, specifically Wasserstein GANs (wGAN), to generate artificial data for different classes of radio galaxies. Subsequently, we augment the training data with images from our wGAN. We find that a simple fully-connected neural network for classification can be improved significantly by including generated images into the training set.
支持wgan增强的射电星系分类
要处理来自新一代射电望远镜的大量数据,新技术必不可少。特别是,图像中天文来源的分类是具有挑战性的。射电星系的形态分类可以通过需要大量标记训练数据的深度学习模型实现自动化。在这里,我们演示了生成模型的使用,特别是Wasserstein gan (wGAN),为不同类别的射电星系生成人工数据。随后,我们用wGAN中的图像增强训练数据。我们发现一个简单的全连接神经网络可以通过将生成的图像包含到训练集中而得到显著的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信