Finding Optimal Qubit Permutations for IBM's Quantum Computer Architectures

Alexandre A. A. de Almeida, G. Dueck, A. C. R. D. Silva
{"title":"Finding Optimal Qubit Permutations for IBM's Quantum Computer Architectures","authors":"Alexandre A. A. de Almeida, G. Dueck, A. C. R. D. Silva","doi":"10.1145/3338852.3339829","DOIUrl":null,"url":null,"abstract":"IBM offers quantum processors for Clifford+T circuits. The only restriction is that not all CNOT gates are implemented and must be substituted with alternate sequences of gates. Each CNOT has its own mapping with a respective cost. However, by permuting the qubits, the number of CNOT that need mappings can be reduced. The problem is to find a good permutation without an exhaustive search. In this paper we propose a solution for this problem. The permutation problem is formulated as an Integer Linear Programming (ILP) problem. Solving the ILP problem, the lowest cost permutation for the CNOT mappings is guaranteed. To test and validated the proposed formulation, quantum architectures with 5 and 16 qubits were used. The ILP formulation along with mapping techniques found circuits with up to 64% fewer gates than other approaches.","PeriodicalId":184401,"journal":{"name":"2019 32nd Symposium on Integrated Circuits and Systems Design (SBCCI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 32nd Symposium on Integrated Circuits and Systems Design (SBCCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3338852.3339829","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

IBM offers quantum processors for Clifford+T circuits. The only restriction is that not all CNOT gates are implemented and must be substituted with alternate sequences of gates. Each CNOT has its own mapping with a respective cost. However, by permuting the qubits, the number of CNOT that need mappings can be reduced. The problem is to find a good permutation without an exhaustive search. In this paper we propose a solution for this problem. The permutation problem is formulated as an Integer Linear Programming (ILP) problem. Solving the ILP problem, the lowest cost permutation for the CNOT mappings is guaranteed. To test and validated the proposed formulation, quantum architectures with 5 and 16 qubits were used. The ILP formulation along with mapping techniques found circuits with up to 64% fewer gates than other approaches.
寻找IBM量子计算机体系结构的最佳量子位排列
IBM为Clifford+T电路提供量子处理器。唯一的限制是,并不是所有的CNOT门都实现了,必须用备选的门序列代替。每个CNOT都有自己的映射和各自的开销。然而,通过排列量子位,可以减少需要映射的CNOT的数量。问题是要找到一个好的排列,而不是穷尽搜索。本文针对这一问题提出了一种解决方案。将置换问题表述为整数线性规划问题。通过求解ILP问题,保证了CNOT映射的最小代价置换。为了测试和验证所提出的公式,使用了5和16个量子比特的量子架构。与其他方法相比,ILP公式和映射技术发现电路的门数减少了64%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信