{"title":"A Reconfigurable Architecture for Multi-Gigabit Speed Content-Based Routing","authors":"J. Moscola, Young-Hee Cho, J. Lockwood","doi":"10.1109/HOTI.2006.7","DOIUrl":null,"url":null,"abstract":"This paper presents a reconfigurable architecture for high-speed content-based routing. Our architecture goes beyond simple pattern matching by implementing a parsing engine that defines the semantics of patterns that are parsed within the data stream. Defining the semantics of patterns allows for more accurate processing and routing of packets using any fields that appear within the payload of the packet. The architecture consists of several components, including a pattern matcher, a parsing structure, and a routing module. Both the pattern matcher and parsing structure are automatically generated using an application-specific compiler that is described in this paper. The compiler accepts a grammar specification as input and outputs a data parser in VHDL. The routing module receives control signals from both the pattern matcher and the parsing structure that aid in the routing of packets. We illustrate how a content-based router can be implemented with our technique using an XML parser as an example. The XML parser presented was designed, implemented, and tested in a Xilinx Virtex XCV2000E FPGA on the FPX platform. It is capable of processing 32-bits of data per clock cycle and runs at 100 MHz. This allows the system to process and route XML messages at 3.2 Gbps","PeriodicalId":288349,"journal":{"name":"14th IEEE Symposium on High-Performance Interconnects (HOTI'06)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"14th IEEE Symposium on High-Performance Interconnects (HOTI'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HOTI.2006.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
This paper presents a reconfigurable architecture for high-speed content-based routing. Our architecture goes beyond simple pattern matching by implementing a parsing engine that defines the semantics of patterns that are parsed within the data stream. Defining the semantics of patterns allows for more accurate processing and routing of packets using any fields that appear within the payload of the packet. The architecture consists of several components, including a pattern matcher, a parsing structure, and a routing module. Both the pattern matcher and parsing structure are automatically generated using an application-specific compiler that is described in this paper. The compiler accepts a grammar specification as input and outputs a data parser in VHDL. The routing module receives control signals from both the pattern matcher and the parsing structure that aid in the routing of packets. We illustrate how a content-based router can be implemented with our technique using an XML parser as an example. The XML parser presented was designed, implemented, and tested in a Xilinx Virtex XCV2000E FPGA on the FPX platform. It is capable of processing 32-bits of data per clock cycle and runs at 100 MHz. This allows the system to process and route XML messages at 3.2 Gbps