Matthieu Renaud, or Farkasdi, A. Desoutter, G. Varga, F. Cuisinier, P. Bousquet
{"title":"A Rat Tail Model for Osseointegration Studies and New Bone Formation Follow-up","authors":"Matthieu Renaud, or Farkasdi, A. Desoutter, G. Varga, F. Cuisinier, P. Bousquet","doi":"10.4172/2157-7013.1000244","DOIUrl":null,"url":null,"abstract":"Animal studies are necessary to precede clinical studies. Recently the rat tail model has been proposed by us as a model for studying bone regeneration with easily surgical approach, effective control of post-operative pain and a decrease of animal number. The present study aimed to widen the rat tail model indication to implant osseointegration. Special titanium implants were inserted through tail vertebrae. A good primary stability was observed three month after implant placement. X-ray microtomography (Micro-CT) and histology were used to visualize bone formation and to calculate bone implant contact. Micro-CT showed osseointegrated implants in caudal vertebra. This illustrates the possibility to obtain bone implant-contact by micro-CT measurements. The results suggest that the rat caudal vertebrae may serve as a good preclinical model for studying implant osseointegration with the possibility of multiple testing within the same experimental animal and the potential to decrease number of experimental animals.","PeriodicalId":150547,"journal":{"name":"Journal of Cell Science and Therapy","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cell Science and Therapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2157-7013.1000244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Animal studies are necessary to precede clinical studies. Recently the rat tail model has been proposed by us as a model for studying bone regeneration with easily surgical approach, effective control of post-operative pain and a decrease of animal number. The present study aimed to widen the rat tail model indication to implant osseointegration. Special titanium implants were inserted through tail vertebrae. A good primary stability was observed three month after implant placement. X-ray microtomography (Micro-CT) and histology were used to visualize bone formation and to calculate bone implant contact. Micro-CT showed osseointegrated implants in caudal vertebra. This illustrates the possibility to obtain bone implant-contact by micro-CT measurements. The results suggest that the rat caudal vertebrae may serve as a good preclinical model for studying implant osseointegration with the possibility of multiple testing within the same experimental animal and the potential to decrease number of experimental animals.