{"title":"The Potential of IR Pyrometry for Monitoring Interpass Temperature in Wire + Arc Additive Manufacturing","authors":"A. Scotti","doi":"10.31031/eme.2019.03.000553","DOIUrl":null,"url":null,"abstract":"The present work aims at presenting and discussing IR pyrometry as applied to Wire+Arc Additive Manufacturing. The importance, different concepts and approaches for measuring interpass temperature are introduced and discussed. The advantages and setbacks of IR pyrometry in comparison with other techniques are presented. Based on experimental results and by using potential solutions for emissivity determination and mitigation of interferences from arc/pool radiations, it is shown that IR pyrometry can be considered as a feasible technique for non-contact interpass temperature measurement with high spatial resolution (small spot size), with promising potentials towards control implementation.","PeriodicalId":289245,"journal":{"name":"Evolutions in Mechanical Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutions in Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31031/eme.2019.03.000553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
The present work aims at presenting and discussing IR pyrometry as applied to Wire+Arc Additive Manufacturing. The importance, different concepts and approaches for measuring interpass temperature are introduced and discussed. The advantages and setbacks of IR pyrometry in comparison with other techniques are presented. Based on experimental results and by using potential solutions for emissivity determination and mitigation of interferences from arc/pool radiations, it is shown that IR pyrometry can be considered as a feasible technique for non-contact interpass temperature measurement with high spatial resolution (small spot size), with promising potentials towards control implementation.