Data-driven state estimation under limited communication resources

Duo Han
{"title":"Data-driven state estimation under limited communication resources","authors":"Duo Han","doi":"10.1109/ICMIC.2014.7020751","DOIUrl":null,"url":null,"abstract":"Remote state estimation in networked control systems always consumes too much sensor battery power and communication bandwidth. Under power and communication constraint, we seek a desirable tradeoff between communication rate and estimation performance in terms of estimation error covariance. We propose two data-driven sensor scheduling strategies to achieve that goal. We prove that under our strategies the minimum mean squared error (MMSE) estimator is a Kalmanlike filter which maintains linearity. We give the explicit MMSE estimator under each strategy. In the end we conduct numerical experiment to show the superiority of our design.","PeriodicalId":405363,"journal":{"name":"Proceedings of 2014 International Conference on Modelling, Identification & Control","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 2014 International Conference on Modelling, Identification & Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMIC.2014.7020751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Remote state estimation in networked control systems always consumes too much sensor battery power and communication bandwidth. Under power and communication constraint, we seek a desirable tradeoff between communication rate and estimation performance in terms of estimation error covariance. We propose two data-driven sensor scheduling strategies to achieve that goal. We prove that under our strategies the minimum mean squared error (MMSE) estimator is a Kalmanlike filter which maintains linearity. We give the explicit MMSE estimator under each strategy. In the end we conduct numerical experiment to show the superiority of our design.
有限通信资源下数据驱动的状态估计
在网络控制系统中,远程状态估计往往会消耗过多的传感器电池电量和通信带宽。在功率和通信约束下,我们根据估计误差协方差在通信速率和估计性能之间寻求理想的权衡。我们提出了两种数据驱动的传感器调度策略来实现这一目标。我们证明了在我们的策略下,最小均方误差(MMSE)估计量是一个保持线性的卡尔曼滤波器。给出了每种策略下的显式MMSE估计量。最后通过数值实验验证了设计的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信