Trajectory Optimization for Cable-Driven Soft Robot Locomotion

James M. Bern, P. Banzet, Roi Poranne, Stelian Coros
{"title":"Trajectory Optimization for Cable-Driven Soft Robot Locomotion","authors":"James M. Bern, P. Banzet, Roi Poranne, Stelian Coros","doi":"10.15607/RSS.2019.XV.052","DOIUrl":null,"url":null,"abstract":"Compliance is a defining characteristic of biological systems. Understanding how to exploit soft materials as effectively as living creatures do is consequently a fundamental challenge that is key to recreating the complex array of motor skills displayed in nature. As an important step towards this grand challenge, we propose a model-based trajectory optimization method for dynamic, cable-driven soft robot locomotion. To derive this trajectory optimization formulation, we begin by modeling soft robots using the Finite Element Method. Through a numerically robust implicit time integration scheme, forward dynamics simulations are used to predict the motion of the robot over arbitrarily long time horizons. Leveraging sensitivity analysis, we show how to efficiently compute analytic derivatives that encode the way in which entire motion trajectories change with respect to parameters that control cable contractions. This information is then used in a forward shooting method to automatically generate optimal locomotion trajectories starting from high-level goals such as the target walking speed or direction. We demonstrate the efficacy of our method by generating and analyzing locomotion gaits for multiple soft robots. Our results include both simulation and fabricated prototypes.","PeriodicalId":307591,"journal":{"name":"Robotics: Science and Systems XV","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"67","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics: Science and Systems XV","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15607/RSS.2019.XV.052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 67

Abstract

Compliance is a defining characteristic of biological systems. Understanding how to exploit soft materials as effectively as living creatures do is consequently a fundamental challenge that is key to recreating the complex array of motor skills displayed in nature. As an important step towards this grand challenge, we propose a model-based trajectory optimization method for dynamic, cable-driven soft robot locomotion. To derive this trajectory optimization formulation, we begin by modeling soft robots using the Finite Element Method. Through a numerically robust implicit time integration scheme, forward dynamics simulations are used to predict the motion of the robot over arbitrarily long time horizons. Leveraging sensitivity analysis, we show how to efficiently compute analytic derivatives that encode the way in which entire motion trajectories change with respect to parameters that control cable contractions. This information is then used in a forward shooting method to automatically generate optimal locomotion trajectories starting from high-level goals such as the target walking speed or direction. We demonstrate the efficacy of our method by generating and analyzing locomotion gaits for multiple soft robots. Our results include both simulation and fabricated prototypes.
缆索驱动软机器人运动轨迹优化
顺应性是生物系统的一个决定性特征。因此,了解如何像生物一样有效地利用软材料是一个根本性的挑战,也是重现自然界中展示的复杂运动技能的关键。作为实现这一宏伟挑战的重要一步,我们提出了一种基于模型的动态索驱动软机器人运动轨迹优化方法。为了推导出这个轨迹优化公式,我们首先使用有限元法对软体机器人进行建模。通过一种数值鲁棒的隐式时间积分方案,采用前向动力学仿真来预测机器人在任意长时间范围内的运动。利用灵敏度分析,我们展示了如何有效地计算解析导数,编码整个运动轨迹相对于控制电缆收缩的参数变化的方式。该信息随后用于向前射击方法,以自动生成从高级目标(如目标行走速度或方向)开始的最佳运动轨迹。通过生成和分析多个软体机器人的运动步态,证明了该方法的有效性。我们的结果包括模拟和制造原型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信