Yuning Jin, Xichen Mi, Jianglu Qian, Na Ma and Wei Dai*,
{"title":"Modular Construction of an MIL-101(Fe)@MIL-100(Fe) Dual-Compartment Nanoreactor and Its Boosted Photocatalytic Activity toward Tetracycline","authors":"Yuning Jin, Xichen Mi, Jianglu Qian, Na Ma and Wei Dai*, ","doi":"10.1021/acsami.2c14489","DOIUrl":null,"url":null,"abstract":"<p >Iron-based metal–organic frameworks (MOFs) have aroused extensive concern as prospective photocatalysts for antibiotic (e.g., tetracycline, TC) degradation. However, efficiencies of single and simple Fe-based MOFs still undergo restricted light absorption and weak charge separation. Assembly of different iron-based MOF building blocks into a hybrid MOF@MOF heterostructure reactor could be an encouraging strategy for the effective capture of antibiotics from the aqueous phase. This paper reports a new-style MIL-101(Fe)@MIL-100(Fe) photocatalyst, which was groundbreakingly constructed to realize a double win for boosting the performances of adsorption and photocatalysis. The optical response range, surface open sites, and charge separation efficiency of MIL-101(Fe)@MIL-100(Fe) can be regulated through accurate design and alteration. Attributed to the synergistic effects of double iron-based MOFs, MIL-101(Fe)@MIL-100(Fe) exhibits an excellent photocatalytic activity toward TC degradability compared to MIL-101(Fe) and MIL-100(Fe), which is even superior to those reported previously in the literature. Furthermore, the main active species of ?O<sub>2</sub><sup>–</sup> and h<sup>+</sup> were proved through trapping tests of the photocatalytic process. Additionally, MIL-101(Fe)@MIL-100(Fe) possesses remarkable stability, maintaining more than 90% initial photocatalytic activity after the fifth cycle. In brief, MIL-101(Fe)@MIL-100(Fe) was highly efficient for TC degradation. Our work offers a new strategy for visible-light photodegradation of TC by exploring the double Fe-based MOF composite.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"14 42","pages":"48285–48295"},"PeriodicalIF":8.3000,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.2c14489","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 17
Abstract
Iron-based metal–organic frameworks (MOFs) have aroused extensive concern as prospective photocatalysts for antibiotic (e.g., tetracycline, TC) degradation. However, efficiencies of single and simple Fe-based MOFs still undergo restricted light absorption and weak charge separation. Assembly of different iron-based MOF building blocks into a hybrid MOF@MOF heterostructure reactor could be an encouraging strategy for the effective capture of antibiotics from the aqueous phase. This paper reports a new-style MIL-101(Fe)@MIL-100(Fe) photocatalyst, which was groundbreakingly constructed to realize a double win for boosting the performances of adsorption and photocatalysis. The optical response range, surface open sites, and charge separation efficiency of MIL-101(Fe)@MIL-100(Fe) can be regulated through accurate design and alteration. Attributed to the synergistic effects of double iron-based MOFs, MIL-101(Fe)@MIL-100(Fe) exhibits an excellent photocatalytic activity toward TC degradability compared to MIL-101(Fe) and MIL-100(Fe), which is even superior to those reported previously in the literature. Furthermore, the main active species of ?O2– and h+ were proved through trapping tests of the photocatalytic process. Additionally, MIL-101(Fe)@MIL-100(Fe) possesses remarkable stability, maintaining more than 90% initial photocatalytic activity after the fifth cycle. In brief, MIL-101(Fe)@MIL-100(Fe) was highly efficient for TC degradation. Our work offers a new strategy for visible-light photodegradation of TC by exploring the double Fe-based MOF composite.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.