Implementation of the State of Charge Estimation with Adaptive Extended Kalman Filter for Lithium-Ion Batteries by Arduino

C. Kung, Si-Xun Luo, Sung-Hsun Liu
{"title":"Implementation of the State of Charge Estimation with Adaptive Extended Kalman Filter for Lithium-Ion Batteries by Arduino","authors":"C. Kung, Si-Xun Luo, Sung-Hsun Liu","doi":"10.1109/ICSSE.2018.8520000","DOIUrl":null,"url":null,"abstract":"This study considers the use of Arduino to achieve state of charge (SOC) estimation of lithium-ion batteries by adaptive extended Kalman filter (AEKF). To implement a SOC estimator for the lithium-ion battery, we adopt a first-order RC equivalent circuit as the equivalent circuit model (ECM) of the battery. The parameters of the ECM will be identified through the designed experiments, and they will be approximated by the piecewise linear functions and then will be built into Arduino. The AEKF algorithm will also be programed into Arduino to estimate the SOC. To verify the accuracy of the SOC estimation, some lithium-ion batteries are tested at room temperature. Experimental results show that the absolute value of the steady-state SOC estimation error is small.","PeriodicalId":431387,"journal":{"name":"2018 International Conference on System Science and Engineering (ICSSE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on System Science and Engineering (ICSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSSE.2018.8520000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This study considers the use of Arduino to achieve state of charge (SOC) estimation of lithium-ion batteries by adaptive extended Kalman filter (AEKF). To implement a SOC estimator for the lithium-ion battery, we adopt a first-order RC equivalent circuit as the equivalent circuit model (ECM) of the battery. The parameters of the ECM will be identified through the designed experiments, and they will be approximated by the piecewise linear functions and then will be built into Arduino. The AEKF algorithm will also be programed into Arduino to estimate the SOC. To verify the accuracy of the SOC estimation, some lithium-ion batteries are tested at room temperature. Experimental results show that the absolute value of the steady-state SOC estimation error is small.
基于自适应扩展卡尔曼滤波的锂离子电池充电状态估计的Arduino实现
本研究考虑使用Arduino通过自适应扩展卡尔曼滤波(AEKF)实现锂离子电池的荷电状态(SOC)估计。为了实现锂离子电池的SOC估计,我们采用一阶RC等效电路作为电池的等效电路模型(ECM)。通过设计的实验确定ECM的参数,用分段线性函数逼近ECM的参数,然后内置于Arduino中。AEKF算法也将被编程到Arduino中来评估SOC。为了验证SOC估算的准确性,对一些锂离子电池在室温下进行了测试。实验结果表明,稳态荷电状态估计误差绝对值较小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信