Evaluation of Biological Treatability of Soil Contaminated with Manufactured Gas Plant Waste

J. Ginn, R. Sims, I. Murarka
{"title":"Evaluation of Biological Treatability of Soil Contaminated with Manufactured Gas Plant Waste","authors":"J. Ginn, R. Sims, I. Murarka","doi":"10.1089/HWM.1995.12.221","DOIUrl":null,"url":null,"abstract":"ABSTRACT The biological treatability of subsurface soil contaminated with manufactured gas plant (MGP) waste was evaluated. Mineralization assays incorporating 14C-phenanthrene were used to evaluate the biotransformation potential of indigenous microorganisms at the site. Multi-phase laboratory microcosms were used to evaluate the interphase transfer potential and chemical mass distribution of phenanthrene. The Microtox™ bioassay was used to evaluate detoxification trends at the site. Mineralization results indicated that indigenous microorganisms at the site were capable of transforming phenanthrene, a component of coal-tar creosote. Results also indicated that spiked 14C-phenanthrene mineralization was influenced by nutrient addition and by the amount of contamination. The chemical mass distribution of 14C-phenanthrene indicated that volatilization may be an important transport mechanism for chemicals residing in, or migrating to the vadose zone of soil. Following removal of the coal-tar waste source at...","PeriodicalId":386820,"journal":{"name":"Hazardous waste and hazardous materials","volume":"27 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hazardous waste and hazardous materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/HWM.1995.12.221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

ABSTRACT The biological treatability of subsurface soil contaminated with manufactured gas plant (MGP) waste was evaluated. Mineralization assays incorporating 14C-phenanthrene were used to evaluate the biotransformation potential of indigenous microorganisms at the site. Multi-phase laboratory microcosms were used to evaluate the interphase transfer potential and chemical mass distribution of phenanthrene. The Microtox™ bioassay was used to evaluate detoxification trends at the site. Mineralization results indicated that indigenous microorganisms at the site were capable of transforming phenanthrene, a component of coal-tar creosote. Results also indicated that spiked 14C-phenanthrene mineralization was influenced by nutrient addition and by the amount of contamination. The chemical mass distribution of 14C-phenanthrene indicated that volatilization may be an important transport mechanism for chemicals residing in, or migrating to the vadose zone of soil. Following removal of the coal-tar waste source at...
工业废气污染土壤的生物处理性评价
摘要研究了人工制气厂(MGP)废弃物污染地下土壤的生物处理性能。矿化分析采用14c -菲来评估现场本地微生物的生物转化潜力。采用多相实验室显微镜对菲的相间传递电位和化学质量分布进行了评价。Microtox™生物测定法用于评估该部位的解毒趋势。矿化结果表明,现场的本地微生物能够转化煤焦油杂酚油的一种成分菲。结果还表明,14c -菲矿化受营养物添加量和污染量的影响。14c -菲的化学质量分布表明,挥发可能是化学物质驻留或迁移到土壤渗透区的重要运输机制。在去除…煤焦油废物源后…
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信