{"title":"Evaluation of Biological Treatability of Soil Contaminated with Manufactured Gas Plant Waste","authors":"J. Ginn, R. Sims, I. Murarka","doi":"10.1089/HWM.1995.12.221","DOIUrl":null,"url":null,"abstract":"ABSTRACT The biological treatability of subsurface soil contaminated with manufactured gas plant (MGP) waste was evaluated. Mineralization assays incorporating 14C-phenanthrene were used to evaluate the biotransformation potential of indigenous microorganisms at the site. Multi-phase laboratory microcosms were used to evaluate the interphase transfer potential and chemical mass distribution of phenanthrene. The Microtox™ bioassay was used to evaluate detoxification trends at the site. Mineralization results indicated that indigenous microorganisms at the site were capable of transforming phenanthrene, a component of coal-tar creosote. Results also indicated that spiked 14C-phenanthrene mineralization was influenced by nutrient addition and by the amount of contamination. The chemical mass distribution of 14C-phenanthrene indicated that volatilization may be an important transport mechanism for chemicals residing in, or migrating to the vadose zone of soil. Following removal of the coal-tar waste source at...","PeriodicalId":386820,"journal":{"name":"Hazardous waste and hazardous materials","volume":"27 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hazardous waste and hazardous materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/HWM.1995.12.221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
ABSTRACT The biological treatability of subsurface soil contaminated with manufactured gas plant (MGP) waste was evaluated. Mineralization assays incorporating 14C-phenanthrene were used to evaluate the biotransformation potential of indigenous microorganisms at the site. Multi-phase laboratory microcosms were used to evaluate the interphase transfer potential and chemical mass distribution of phenanthrene. The Microtox™ bioassay was used to evaluate detoxification trends at the site. Mineralization results indicated that indigenous microorganisms at the site were capable of transforming phenanthrene, a component of coal-tar creosote. Results also indicated that spiked 14C-phenanthrene mineralization was influenced by nutrient addition and by the amount of contamination. The chemical mass distribution of 14C-phenanthrene indicated that volatilization may be an important transport mechanism for chemicals residing in, or migrating to the vadose zone of soil. Following removal of the coal-tar waste source at...