Wun-Siou Jhong, S. Chu, Yu-Jung Huang, Tsun-Yi Hsu, Wei-Chen Lin, Po-Chung Huang, Jia-Jung Wang
{"title":"Deep Learning Hardware/Software Co-Design for Heart Sound Classification","authors":"Wun-Siou Jhong, S. Chu, Yu-Jung Huang, Tsun-Yi Hsu, Wei-Chen Lin, Po-Chung Huang, Jia-Jung Wang","doi":"10.1109/ISOCC50952.2020.9333069","DOIUrl":null,"url":null,"abstract":"This paper presents a software/hardware co-design for classifying three most commonly heart sounds classes: normal, murmur and extrasystole heartbeat. The detection system extracts Mel Frequency Cepstral Coefficient (MFCC)-based heart sound features to train different deep learning network architectures for multiclass classification. The software/hardware co-design for Long Short-Term Memory (LSTM) implementation indicates the multiclass classification accuracy of 85% can be achieved. The proposed heart sound classification platform has great development potential and good application prospects.","PeriodicalId":270577,"journal":{"name":"2020 International SoC Design Conference (ISOCC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International SoC Design Conference (ISOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISOCC50952.2020.9333069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This paper presents a software/hardware co-design for classifying three most commonly heart sounds classes: normal, murmur and extrasystole heartbeat. The detection system extracts Mel Frequency Cepstral Coefficient (MFCC)-based heart sound features to train different deep learning network architectures for multiclass classification. The software/hardware co-design for Long Short-Term Memory (LSTM) implementation indicates the multiclass classification accuracy of 85% can be achieved. The proposed heart sound classification platform has great development potential and good application prospects.