Kuldeep Jajoria, C. Jha, A. Chakraborty, Himanshu Shekhar
{"title":"Detection of ultrasound up to 10 MHz frequency using an FBG sensor","authors":"Kuldeep Jajoria, C. Jha, A. Chakraborty, Himanshu Shekhar","doi":"10.1109/WRAP54064.2022.9758347","DOIUrl":null,"url":null,"abstract":"In this paper, we present the characterization of an FBG sensor to detect ultrasound in the MHz frequency range which is used in biomedical ultrasound. The linearity, sensitivity, and repeatability of the sensor were tested at 1 MHz, 5 MHz, and 10 MHz in the peak acoustic rarefactional pressure range of 0-1.2 MPa. The FBG showed good linearity (R-Squared=0.98), high sensitivity (0.82 V/MPa at 10 MHz), and high repeatability (coefficient of variation ≤ 5.5%). Our results show the potential of FBG sensors to detect ultrasound for biomedical applications.","PeriodicalId":363857,"journal":{"name":"2022 Workshop on Recent Advances in Photonics (WRAP)","volume":"49 36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Workshop on Recent Advances in Photonics (WRAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WRAP54064.2022.9758347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we present the characterization of an FBG sensor to detect ultrasound in the MHz frequency range which is used in biomedical ultrasound. The linearity, sensitivity, and repeatability of the sensor were tested at 1 MHz, 5 MHz, and 10 MHz in the peak acoustic rarefactional pressure range of 0-1.2 MPa. The FBG showed good linearity (R-Squared=0.98), high sensitivity (0.82 V/MPa at 10 MHz), and high repeatability (coefficient of variation ≤ 5.5%). Our results show the potential of FBG sensors to detect ultrasound for biomedical applications.