Multi-view orientation estimation using Bingham mixture models

Sebastian Riedel, Zoltán-Csaba Márton, Simon Kriegel
{"title":"Multi-view orientation estimation using Bingham mixture models","authors":"Sebastian Riedel, Zoltán-Csaba Márton, Simon Kriegel","doi":"10.1109/AQTR.2016.7501381","DOIUrl":null,"url":null,"abstract":"This paper describes a multi-view pose estimation system, that is exploiting the mobility of a depth sensor through mounting it onto a robotic manipulator. Given a pose estimation algorithm that performs feature extraction and matching to a model database, we investigate the probabilistic modeling of the pose space as well as the measurement uncertainty, to be used in a sequential state estimation approach. Uncertainties in 3d position can be modeled in a parametric way by 3d Gaussians, but the space of rotations in 3d - the special orthogonal group SO(3) - requires approaches from directional statistics. A convenient representation for orientations are unit quaternions over which the Bingham distribution defines a parametric probability density function. The Bingham distribution also correctly accounts for the sign symmetry of orientation quaternions and leave degrees of freedom unconstrained (which is especially useful if an object is rotationally symmetric, with no unique quaternion describing its orientation). In our experiments we test different sequential fusion methods, optimize their parameters, and investigate how the derived filter performs in a case with high uncertainties.","PeriodicalId":110627,"journal":{"name":"2016 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AQTR.2016.7501381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

This paper describes a multi-view pose estimation system, that is exploiting the mobility of a depth sensor through mounting it onto a robotic manipulator. Given a pose estimation algorithm that performs feature extraction and matching to a model database, we investigate the probabilistic modeling of the pose space as well as the measurement uncertainty, to be used in a sequential state estimation approach. Uncertainties in 3d position can be modeled in a parametric way by 3d Gaussians, but the space of rotations in 3d - the special orthogonal group SO(3) - requires approaches from directional statistics. A convenient representation for orientations are unit quaternions over which the Bingham distribution defines a parametric probability density function. The Bingham distribution also correctly accounts for the sign symmetry of orientation quaternions and leave degrees of freedom unconstrained (which is especially useful if an object is rotationally symmetric, with no unique quaternion describing its orientation). In our experiments we test different sequential fusion methods, optimize their parameters, and investigate how the derived filter performs in a case with high uncertainties.
本文描述了一种多视角姿态估计系统,该系统通过将深度传感器安装在机械臂上来利用其机动性。给定一种姿态估计算法,该算法执行特征提取和与模型数据库的匹配,我们研究了姿态空间的概率建模以及测量不确定性,用于序列状态估计方法。三维位置的不确定性可以用三维高斯函数以参数化的方式建模,但三维旋转空间——特殊的正交群SO(3)——需要从方向统计的角度来研究。一个方便的方向表示是单位四元数,宾厄姆分布在其上定义了一个参数概率密度函数。宾厄姆分布也正确地解释了方向四元数的符号对称性,并使自由度不受约束(如果一个物体是旋转对称的,没有唯一的四元数描述它的方向,这是特别有用的)。在我们的实验中,我们测试了不同的顺序融合方法,优化了它们的参数,并研究了衍生滤波器在高不确定性情况下的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信