{"title":"Simulation of quantum light sources using the self-consistently coupled Schrödinger-Poisson-Drift-Diffusion-Lindblad syste","authors":"M. Kantner","doi":"10.1109/NUSOD.2019.8806869","DOIUrl":null,"url":null,"abstract":"The device-scale simulation of electrically driven quantum light sources based on semiconductor quantum dots requires a combination of the (classical) semiconductor device equations with cavity quantum electrodynamics. In this paper, we extend our previously developed hybrid quantum-classical model system – where we have coupled the drift-diffusion system with a Lindblad-type quantum master equation – by including a self-consistent Schrödinger–Poisson problem. The latter describes the (quasi-)bound states of the quantum dot carriers. The extended model allows to describe the bias-dependency of the emission spectrum due to the quantum confined Stark effect.","PeriodicalId":369769,"journal":{"name":"2019 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NUSOD.2019.8806869","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The device-scale simulation of electrically driven quantum light sources based on semiconductor quantum dots requires a combination of the (classical) semiconductor device equations with cavity quantum electrodynamics. In this paper, we extend our previously developed hybrid quantum-classical model system – where we have coupled the drift-diffusion system with a Lindblad-type quantum master equation – by including a self-consistent Schrödinger–Poisson problem. The latter describes the (quasi-)bound states of the quantum dot carriers. The extended model allows to describe the bias-dependency of the emission spectrum due to the quantum confined Stark effect.