Breaking the Conversion Wall in Mixed-Signal Systems Using Neuromorphic Data Converters

Loai Danial, Shahar Kvatinsky
{"title":"Breaking the Conversion Wall in Mixed-Signal Systems Using Neuromorphic Data Converters","authors":"Loai Danial, Shahar Kvatinsky","doi":"10.1109/ECCTD49232.2020.9218340","DOIUrl":null,"url":null,"abstract":"Data converters are ubiquitous in mixed-signal systems, becoming the computational bottleneck in traditional data acquisition and emerging neuromorphic systems. Unfortunately, conventional Nyquist data converters trade off speed, power, and accuracy. Therefore, they are exhaustively customized for special purpose applications. Furthermore, intrinsic real-time and post-silicon variations dramatically degrade their performance along with the CMOS technology downscaling. Here, we review on our neuromorphic analog-to-digital (ADC) and digital-to-analog (DAC) converters that are trained using the online stochastic gradient descent algorithm to autonomously adapt to different design specifications, including multiple full-scale voltages, number of resolution bits, and sampling frequencies. We demonstrate the feasibility of our converters by simulations and preliminary experiments using memristive technologies. We show collective properties of our converters in application reconfiguration, logarithmic quantization, mismatches calibration, noise tolerance, and power optimization. The proposed data converters achieve a superior figure-of-merit (FoM) of 1 fJ/conv.","PeriodicalId":336302,"journal":{"name":"2020 European Conference on Circuit Theory and Design (ECCTD)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 European Conference on Circuit Theory and Design (ECCTD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECCTD49232.2020.9218340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Data converters are ubiquitous in mixed-signal systems, becoming the computational bottleneck in traditional data acquisition and emerging neuromorphic systems. Unfortunately, conventional Nyquist data converters trade off speed, power, and accuracy. Therefore, they are exhaustively customized for special purpose applications. Furthermore, intrinsic real-time and post-silicon variations dramatically degrade their performance along with the CMOS technology downscaling. Here, we review on our neuromorphic analog-to-digital (ADC) and digital-to-analog (DAC) converters that are trained using the online stochastic gradient descent algorithm to autonomously adapt to different design specifications, including multiple full-scale voltages, number of resolution bits, and sampling frequencies. We demonstrate the feasibility of our converters by simulations and preliminary experiments using memristive technologies. We show collective properties of our converters in application reconfiguration, logarithmic quantization, mismatches calibration, noise tolerance, and power optimization. The proposed data converters achieve a superior figure-of-merit (FoM) of 1 fJ/conv.
利用神经形态数据转换器打破混合信号系统的转换壁垒
数据转换器在混合信号系统中无处不在,成为传统数据采集和新兴神经形态系统的计算瓶颈。不幸的是,传统的奈奎斯特数据转换器在速度、功率和准确性上都有所取舍。因此,它们是为特殊用途应用而精心定制的。此外,随着CMOS技术的缩小,固有的实时和后硅变化显著降低了它们的性能。在这里,我们回顾了我们的神经形态模数(ADC)和数模(DAC)转换器,这些转换器使用在线随机梯度下降算法进行训练,以自主适应不同的设计规范,包括多个满量程电压,分辨率位数和采样频率。我们通过模拟和记忆技术的初步实验证明了我们的转换器的可行性。我们展示了我们的转换器在应用重构、对数量化、错配校准、噪声容限和功率优化方面的集体特性。所提出的数据转换器实现了1 fJ/conv的优越性能因数(FoM)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信