All-Digital Time-Domain Compute-in-Memory Engine for Binary Neural Networks With 1.05 POPS/W Energy Efficiency

Jie Lou, Christian Lanius, Florian Freye, Tim Stadtmann, T. Gemmeke
{"title":"All-Digital Time-Domain Compute-in-Memory Engine for Binary Neural Networks With 1.05 POPS/W Energy Efficiency","authors":"Jie Lou, Christian Lanius, Florian Freye, Tim Stadtmann, T. Gemmeke","doi":"10.1109/ESSCIRC55480.2022.9911382","DOIUrl":null,"url":null,"abstract":"This paper presents an all-digital time-domain compute-in-memory (TDCIM) engine for binary neural networks (BNNs), which is based on commercial standard cells facilitating technology mapping. The proposed TDCIM engine exploits energy-efficient computing principles, supports data reuse and employs double-edge triggered operation. Time domain wave-pipelining technique is also introduced to improve throughput by 1.5x while preserving accuracy. We use Structured Data-Path (SDP) placement and custom routing flow during place and route (P&R) to reduce systematic variations. The measured arrival time of different MAC results is sufficiently bounded to preserve accuracy across PVT variations. Fabricated in a 22nm process, the proposed BNN engine can achieve an energy efficiency of 1.05 POPS/W at 0.5V matching the accuracy of the PyTorch baseline of 99.14% on the MNIST dataset.","PeriodicalId":168466,"journal":{"name":"ESSCIRC 2022- IEEE 48th European Solid State Circuits Conference (ESSCIRC)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESSCIRC 2022- IEEE 48th European Solid State Circuits Conference (ESSCIRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSCIRC55480.2022.9911382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper presents an all-digital time-domain compute-in-memory (TDCIM) engine for binary neural networks (BNNs), which is based on commercial standard cells facilitating technology mapping. The proposed TDCIM engine exploits energy-efficient computing principles, supports data reuse and employs double-edge triggered operation. Time domain wave-pipelining technique is also introduced to improve throughput by 1.5x while preserving accuracy. We use Structured Data-Path (SDP) placement and custom routing flow during place and route (P&R) to reduce systematic variations. The measured arrival time of different MAC results is sufficiently bounded to preserve accuracy across PVT variations. Fabricated in a 22nm process, the proposed BNN engine can achieve an energy efficiency of 1.05 POPS/W at 0.5V matching the accuracy of the PyTorch baseline of 99.14% on the MNIST dataset.
二进制神经网络的全数字时域内存计算引擎,能量效率为1.05 POPS/W
本文提出了一种基于商用标准单元的二进制神经网络全数字时域内存计算引擎(TDCIM),便于技术映射。提出的TDCIM引擎利用节能计算原理,支持数据重用,并采用双边缘触发运算。引入时域波管道技术,在保持精度的同时,将吞吐量提高1.5倍。我们使用结构化数据路径(SDP)放置和自定义路由流在位置和路径(P&R)中减少系统变化。不同MAC结果的测量到达时间有足够的限制,以保持跨PVT变化的准确性。在22nm工艺下,所提出的BNN引擎可以在0.5V下实现1.05 POPS/W的能量效率,与PyTorch基线在MNIST数据集上99.14%的精度相匹配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信